CHẾ TẠO VẬT LIỆU XÚC TÁC QUANG VÙNG KHẢ KIẾN WO₃/rGO NHẰM TĂNG CƯỜNG PHÂN HỦY DUNG DỊCH CIPROFLOXACIN VÀ METHYLENE BLUE

Đến toà soạn 15-05-2024

Lê Thị Thanh Thúy*, Phạm Thị Giang Anh, Bùi Thị Cẩm Huệ, Nguyễn Hữu Trí, Đặng Xuân Dự

Khoa SPKHTN, trường Đại học Sài Gòn, 237 An Dương Vương, phường 3, quận 5, TPHCM

*Email: lttthuy@sgu.edu.vn

SUMMARY

SYNTHESIS OF WO3/rGO COMPOSITE FOR ENHANCED AQUEOUS CIPROFLOXACIN AND METHYLENE BLUE PHOTOCATALYTIC DEGRADATION UNDER VISIBLE LIGHT

A heterojunction of two semiconductor materials, WO_3 and rGO, was synthesized into a composite material system via a facile sol-gel method. This synthesis produced a WO_3/rGO material with exceptional photocatalytic capabilities, overcoming the limitations of pristine WO_3 and rGO materials. The enhanced photocatalytic activity of WO_3/rGO is attributed to the efficient charge transfer from WO_3 to the interconnected rGO network, which extends the lifetime of photogenerated charge carriers. Characterization of the synthesized materials using modern analytical techniques, including XRD, SEM, EDX, FTIR, UV-Vis DRS, and BET, confirmed their structural and morphological properties. The WO_3/rGO composites demonstrated excellent photocatalytic activity in decomposing the organic dye methylene blue (MB) and antibiotic pollutants like ciprofloxacin (CIP) under visible light irradiation. Furthermore, reusability studies revealed that rGO acts as an effective adsorbent while WO_3 provides catalytic activity, highlighting the potential of rGO as a support material for WO_3 catalytic centers. The durability of the WO_3/rGO material was demonstrated through three cycles of use, maintaining over 87% efficiency in methylene blue degradation under visible light. These results underscore the promising application of WO_3/rGO material for organic pollutant removal in wastewater treatment processes.

Keywords: *Ciprofloxacin, methylene blue, WO₃, rGO, xúc tác quang*

1. ĐẶT VẤN ĐỀ

Trong thập kỷ hiện đại này, các ngành công nghiệp như dệt may, nông nghiệp và dược phẩm đã thải chất thải hóa học không được kiểm soát vào sông, hồ, ao và đại dương. Hậu quả cấp tính và mãn tính của các chất ô nhiễm độc hại này ảnh hưởng đến sự sống của sinh vật và thủy sinh [1]. Đáng chú ý, thuốc nhuộm có chứa nhiều chất hữu cơ bền khó phân hủy sinh học không được xử lí thải ra ngoài môi trường xung quanh gây ô nhiễm [2,3]. Độc tính gây ra các vấn đề sức khỏe nghiêm trọng cho con người và có thể ảnh hưởng đến thực vật phù du của hệ thủy sinh [4]. Để giải quyết các vấn đề này, các chất xúc tác quang đã chứng tỏ tính ưu việt như thân thiện với môi trường, chi phí thấp, không độc hai và có đô ổn đinh cao trong xử lý chất thải thuốc nhuộm trước khi thải vào nguồn nước [5]. Ngoài ra, để điều trị nhiễm trùng do vi khuẩn và nấm ở người và động vật, các hợp chất hữu cơ khó phân hủy sinh học đã được sử dung làm thuốc kháng sinh. Tuy nhiên, các loai thuốc độc hai thông qua nước tiểu sẽ trở thành kháng sinh không chuyển hóa, tồn lưu lâu ngày gây ảnh hưởng đến môi trường sinh thái [6]. Nhiều loại kháng sinh đã được phát hiện trong nước uống, nước biển, nước ngầm và nước mặt [7]. Trong số đó, ciprofloxacin (CIP) thường được tìm thấy trong nước và đất dưới dang hợp chất hữu cơ bền khó phân hủy sinh học, chuyển hóa thành nhiều chất trung gian độc hai hơn [8]. Vì vây, cần có môt công nghê tốt để loại bỏ các chất ô nhiễm độc hai ra khỏi môi trường nước. Gần đây, nhiều chất bán dẫn đã được nghiên cứu sử dụng làm chất xúc tác quang để xử lý nước ô nhiễm nhờ khả năng oxi hóa manh và tốc đô khoáng hóa cao đã giúp loai bỏ hiêu quả các chất ô nhiễm hữu cơ trong nước [9]. Tuy nhiên, năng lượng vùng cấm rộng đã làm hạn chế khả năng sử dung của chúng dưới ánh sáng khả kiến [10].

Vonfram oxit (WO₃) là môt chất xúc tác quang đầy hứa hen nhờ khoảng cách năng lượng hẹp (2,4 - 2,8 eV) và khả năng oxi hóa cao (3,1 - 3,2 V_{NHE}) của dải hóa trị (VB), điều này thuận lợi trong việc xử lí dưới ánh sáng khả kiến [10–12]. Vì vây, WO3 đã được dùng cho nhiều lĩnh vực như phân hủy quang học, khử trùng vi khuẩn, khử CO₂, tạo H₂ và tách nước [13,14]. Tuy nhiên, WO₃ nguyên chất có vùng dẫn (CB) thấp nên không thích hợp cho phản ứng với các chất nhân electron, điều này có thể tao ra sư tái tổ hợp e^{-}/h^{+} quang sinh [15]. Do đó viêc nghiên cứu cải thiện vùng dẫn của WO₃ là rất cần thiết. Gần đây, tinh thể nguyên tử hai chiều (2D) của graphene có các đặc tính

269

vươt trôi như diên tích bề mặt riêng lớn và khả năng truyền điên tích tốt nên được sử dung rông rãi để điều chế các nano lai với chất bán dẫn [16,17]. Hơn nữa, graphene oxit dạng khử (rGO) hoạt động như một chất trung gian để truyền điên tích giúp kéo dài thời gian sống của electron và lỗ trống quang sinh trong vật liệu lại [18]. Tuy nhiên có rất ít nghiên cứu về hệ WO₃ trên rGO để loại bỏ ô nhiễm kháng sinh mới như ciprofloxacin. Trong nghiên cứu này, vật liệu WO3 được hình thành trên các tấm rGO theo phương pháp sol gel thu được vật liệu WO₃/rGO. Vật liệu được chứng minh hoạt tính xúc tác quang trên sự phân hủy chất ô nhiễm thuốc nhuộm hữu cơ methylene blue 20mg/L kháng sinh (MB) và ciprofloxacin 10mg/L(CIP) dưới bức xa ánh sáng nhìn thấy. Lượng rGO được thay đổi để giúp tăng đô nhay quang và tăng hoat tính của xúc tác. Vật liệu tổng hợp được đặc trưng cấu trúc bằng phương pháp phân tích XRD, FTIR, SEM, TEM, EDX, UV-Vis DRS. BET.

2. THỰC NGHIỆM

2.1. Hoá chất tổng hợp

Tất cả các hóa chất là loại phân tích, được sử dụng trực tiếp mà không cần tinh chế gì thêm. Graphite (99,99%), sulfuric acid (H_2SO_4 98%), sodium nitrate (NaNO₃), potassium permanganate (KMnO₄), hydrogen peroxide (H_2O_2 30%), ascorbic acid ($C_6H_8O_6$), hydrochloric acid (HCl 36%), ethanol (C_2H_5OH 98%), nitric acid (HNO₃ 65%), sodium tungstate dihydrate (Na₂WO₄.2H₂O).

2.2. Quy trình tổng hợp vật liệu

2.2.1. Tổng hợp GO và rGO

Cho 1,000 gam graphite, 24,0 mL H_2SO_4 đậm đặc và 0,500 gam NaNO₃ vào cốc dung tích 250,0 mL. Khuấy dung dịch ở 5 °C trong một giờ. Sau đó nâng nhiệt độ lên 15 °C và thêm từ từ 3,000 gam KMnO₄ vào dung dịch. Tiếp tục thêm 100,0 mL nước cất, nhiệt độ dung dịch được nâng lên 90 °C và tiếp tục khuẩy trong một giờ. Thêm vào dung dịch 5,0 mL H₂O₂ (30%) và khuấy tiếp một giờ nữa. Đem dung dịch lọc rửa nhiều lần với HCl 10% và rửa lại bằng nước cất đến pH trung tính. Cuối cùng sấy khô hỗn hợp ở 70 °C thu được graphene oxit (GO).

Cho 1,000 gam GO vào 250,0 mL nước cất, khuấy trong 15 phút, thêm 10,000 g acid ascorbic và khuấy liên tục 8 giờ ở 50 °C. Lọc rửa hỗn hợp nhiều lần bằng nước cất đến pH trung tính. Sấy khô hỗn hợp ở 70 °C trong 24 giờ thu được graphene oxit dạng khử (rGO).

2.2.2. Tổng hợp WO₃, WO₃/rGO

Cho 1,200 gam $Na_2WO_4.2H_2O$, x gam rGO (trong đó x thay đổi từ 0,100g ÷ 0,500g) vào cốc có chứa 17,0 mL C_2H_5OH khan; 0,4 mL HNO₃ và 1,6 mL nước cất. Khuấy đều dung dịch ở nhiệt độ phòng trong 2 giờ thu được kết tủa. Sấy khô kết tủa ở 100°C trong 3 giờ và nung ở 425 °C trong 3 giờ ta thu được vật liệu WO₃/rGO.

Vật liệu WO₃ được tổng hợp tương tự qui trình tổng hợp WO₃/rGO nhưng không cho rGO vào quá trình tổng hợp.

2.3. Phương pháp phân tích

Vật liệu rGO, WO₃, WO₃/rGO được phân tích cấu trúc và hình thái bề mặt bằng các công cụ XRD (D8 – Advance 5005) xác định thành phần pha; UV–Vis DRS (Tasco-V670 photospectrometer) – tính chất quang của vật liệu; Phổ tán xạ năng lượng tia X - EDX (JEOL-JSM 6490) – xác định thành phần hóa học trong mẫu; FTIR xác định liên kết trong vật liệu. Hình ảnh bề mặt và độ xốp vật liệu được xác định bằng phân tích SEM (Hitachi S4800 electron Microscope), hấp phụ BET. Nồng độ dung dịch phẩm nhuộm MB, CIP được xác định theo phương pháp trắc quang trên máy UV-Vis JASCO V-730, Nhật Bản.

2.4. Thí nghiệm khảo sát hoạt tính xúc tác quang của vật liệu

Hoạt tính quang xúc tác của vật liệu được đánh giá bằng cách phân hủy dung dịch methylene blue (MB) 20 mg/L và ciprofloxacin (CIP) 10 mg/L dưới ánh sáng khả kiến. Đèn compact (18W) có bước sóng từ 400 nm đến 700 nm được sử dung làm nguồn sáng thay vì ánh sáng tư nhiên. Để tiến hành thí nghiệm, 100,0 mL dung dich cần xử lý được cho vào cốc dung tích 250,0 mL và thêm 1,5 g/L chất xúc tác quang. Dung dịch này được khuẩy ở tốc đô không đối trong bóng tối trong 30 phút để đạt được trạng thái cân bằng hấp phu trước khi được chiếu sáng bằng đèn compact. Nồng độ còn lại của MB và CIP được xác định bằng phương pháp trắc quang ở bước sóng hấp phụ cực đại ở 653 nm và 326 nm.

3. KẾT QUẢ VÀ THẢO LUẬN

3.1. Kết quả đặc trưng vật liệu

3.1.1. Kết quả đặc trưng vật liệu rGO, WO₃, WO₃/rGO

Mẫu nhiễu xạ tia X (XRD) của vật liệu rGO, WO3 và WO3/rGO (Hình 1a) cho thấy các tín hiệu phản xạ chính của WO₃ được phát hiện ở 23,11° (002), 23,67° (020), 24,23° (200) và 33,85° (202) [19]. Những kết quả này phù hợp với các báo cáo chỉ ra rằng việc gắn WO₃ vào rGO không làm thay đổi thành phần pha của vât liêu [8,14]. Như thế hiên trong Hình 1, cũng cho thấy đỉnh nhiễu xạ rộng (002) trong phạm vi từ 23° đến 26°, tương ứng với khoảng cách giữa các lớp của các tấm graphene xếp chồng lên nhau ở 4,47 Å và 3,53 Å, có sư khác với góc nhiễu xa của GO thể hiện cường độ mạnh và đỉnh nhọn $\dot{\sigma} 2\theta = 11,7^{\circ}$, tương ứng với khoảng cách giữa các lớp là 7,6 Å (002) [20]. Điều này chứng tỏ việc khử GO giúp loại bỏ các

phân tử nước và nhóm oxit xen kẽ. Mẫu XRD của tổ hợp WO₃/rGO biểu thị sự chồng lấp của mặt phẳng (002) của rGO với mặt phẳng (002) của WO₃. Phân tích nhiễu xạ tia X một phần chứng minh sự lai ghép của WO₃ và rGO. Các pha của WO₃ và rGO đều giữ nguyên cấu trúc ban đầu sau khi lai ghép.

Đặc trưng hình thái bề mặt vật liệu rGO và WO₃/rGO được thể hiện qua kết quả phân tích hiển vi electron quét SEM (Hình 1b-c). Kết quả ảnh SEM vật liệu WO₃/rGO (Hình 1c) cho thấy hình ảnh của các hạt WO₃ phủ trên bề mặt của rGO. Kết quả ảnh SEM đã một phần kiểm chứng kết quả được nêu ở phân tích XRD của vật liệu.

Hình 1. Giản đồ XRD của các mẫu WO₃, rGO, WO₃/rGO (a) và ảnh SEM của mẫu rGO (b), WO₃/rGO (c)

Phố EDX (Hình 2a-b) cho thấy sự tốn tại của các đỉnh W và O trong vật liệu WO₃ và các đỉnh W, O và C trong vật liệu WO₃/rGO. Việc giảm tỷ lệ phần trăm nguyên tử của O và W (Bảng 1) có thể là do sự kết hợp của rGO vào vật liệu. Các ảnh maping của nguyên tố trong mẫu WO₃/rGO (Hình 2d) cho thấy sự phân bố xen kẽ của các thành phần W, O và C. Ngoài ra, sự hiện diện của các nguyên tố vi lượng như S, Na và Al trong vật liệu WO₃/rGO cũng được ghi nhận, có thể là do tạp chất trong than chì và NaNO₃ dư từ quá trình tổng hợp GO. Kết quả EDX xác nhận sự tạo thành composite giữa WO₃ và rGO.

Hình 2. Phổ EDX của mẫu WO₃ (a); WO₃/rGO (b) và ánh xạ của các nguyên tố trong mẫu WO₃ (c), WO₃/rGO (d)

Bảng 1. Tỉ lệ % các nguyên tố trong mẫu WO₃ và WO₃/rGO

Nguyên tố	Mẫu WO ₃		Mẫu WO ₃ /rGO	
	% Khối	% Nguyên	% Khối	% Nguyên
10	lượng	tử	lượng	tử
0	39,75	88,35	24,46	42,30
W	60,25	11,65	46,16	6,95
С	0	0	14,50	33,40
S	0	0	0,43	0,37
Na	0	0	12,11	14,57
Al	0	0	2,34	2,40
Tổng	100,00	100,00	100,00	100,00

Phổ FTIR của mẫu WO₃/rGO (Hình 3a) cho thấy vùng 1384 cm⁻¹ đặc trưng cho sự dao động của liên kết W=O trong tinh thể WO₃. Ngoài ra, một số đỉnh tại vùng 1368 cm⁻¹ đến 1401 cm⁻¹ tương ứng với dao động kéo dãn của liên kết W=O trong tinh thể WO₃ [11]. Ngoài ra, phổ FTIR của mẫu WO₃/rGO cũng cho thấy sự hiện diện của các đỉnh khác nhau ở 3560 cm⁻¹, 1700 cm⁻¹, 1540 cm⁻¹, 1268 cm⁻¹ và 1052 cm⁻¹, tương ứng với dao động kéo giãn O–H của các phân tử nước hấp thụ bề mặt, của nhóm carbonyl (C=O), nhóm C=C trong vòng thơm và nhóm C–O trong rGO [19]. Kết quả phân tích phổ hồng ngoại đã chứng tỏ sự thành công trong việc tạo composite WO₃ với rGO. Kết quả trên phù hợp với kết quả đã được phân tích từ giản đồ nhiễu xạ tia X.

Hình 3. Phổ FTIR (a) và UV-Vis DRS (b) của vật liệu; Sơ đồ cơ chế chuyển dịch điện tích (c) và đường đẳng nhiệt hấp phụ và giải hấp phụ nitơ của WO₃/rGO (d)

Phố hấp thu UV-Vis DRS (Hình 3b) của vật liêu WO₃/rGO cho thấy sự mở rông của canh hấp thu về phía vùng ánh sáng khả kiến so với vật liệu WO₃ đơn pha. Ngoài ra, ở phố UV Vis của WO₃/rGO có sư lồng ghép của phổ rGO. Việc giảm năng lượng ở vùng cấm của WO₃ có thể là do sư hình thành vật liêu WO₃/rGO, trong đó WO₃ được phân tán trên mạng liên hợp của rGO (Hình 3c). Điều này giúp rút ngắn khoảng cách chuyển dịch electron trên vật liêu WO3/rGO nên dẫn đến giảm năng lương vùng cấm của vật liêu. Do đó vật liêu xúc tác quang WO₃/rGO có thể hoạt động trong vùng ánh sáng khả kiến. Từ kết quả phân tích UV-Vis có thể cho dự đoán sơ đồ chuyển dich electron trên hê vật liêu WO3/rGO (Hình 3c) và mô tả quá trình phân hủy chất hữu cơ bởi vật liêu như sau:

WO₃/rGO +
$$h\nu \rightarrow WO_3/rGO^*$$
 (h^+/e^-)
(1)

$$h^+$$
 + $OH^-/H_2O \rightarrow OH$ + H^+ (2)

 $e^{-} + rGO \rightarrow e^{-}(rGO)$ (3)

 $e^{-}(rGO) + O_2 \rightarrow O_2^{\bullet-}(rGO)$ (4)

 $MB/CIP + OH \rightarrow San pham$ (5)

$$MB/CIP + 0^{\bullet-}_2 \rightarrow S_{an} ph_{am}^{\bullet}$$
(6)

Như vậy rGO đóng vai trò như chất truyền điện tích giúp kéo dài thời gian sống của các electron quang sinh và cũng là nơi lưu giữ chất hữu cơ giúp tạo thuận lợi cho các tâm hoạt động của xúc tác phân hủy chúng.

Dưa trên kết quả phân tích đẳng nhiệt hấp phụ thể hiện ở hình 3d cho thấy các mẫu vật liệu đều tương ứng với đường đẳng nhiệt loại IV và vòng trễ H3, theo phân loại IUPAC [21,22]. Điều này chứng tỏ rằng WO₃/rGO là vật liệu xốp, có diện tích bề mặt lớn 20,15 (m^2/g) và phân bố kích thước lỗ trung bình có bán kính khoảng 1,72 nm. Với kết quả phân tích BET đã chứng tỏ vật liệu có khả năng sự hập phụ tốt và lưu giữ các phân tử hữu cơ có hoat tính cao trên bề măt của nó, tao điều kiện thuận lợi cho các tâm hoạt đông của xúc tác phân hủy các hợp chất hữu cơ được dễ dàng hơn. Ngoài ra kết quả phân tích BET cho thấy sự phân tán WO₃ trên vòng thơm của rGO có thể làm giảm kích thước lỗ trống, chứng minh có sự hình thành hỗn hợp WO₃/rGO thực sự đã tác đông đến hình thái và tính chất của vật liệu. Như vậy, việc gắn WO₃ lên rGO đã góp phần làm giảm năng lượng vùng cấm, giảm khả năng tái tổ hợp e^{-h^+} quang sinh, tao điều kiên cho sư chuyển vùng hoat động của xúc tác về vùng ánh sáng khả kiến và tăng hoat tính xúc tác

3.2. Kết quả khảo sát hoạt tính xúc tác quang của vật liệu trên sự phân hủy methylene blue

Khả năng hấp phụ và xúc tác quang của vật liệu được nghiên cứu trên việc xử lý dung dịch phẩm nhuộm methylene blue

(20mg/L) dưới sự chiếu xạ ánh sáng khả kiến (Hình 4). Kết quả cho thấy rGO thể hiện khả năng xử lý methylene blue cao nhưng hiệu suất tái sinh rất thấp (Hình 4b). Điều này có thể được giải thích bởi tính chất hấp phụ cao của rGO. Với khả năng xử MB của vật liệu WO₃/rGO ban đầu chỉ cao thứ hai sau rGO nhưng khả năng tái sử dụng sau một chu kỳ của WO₃/rGO đạt được là cao nhất và ổn định nhất. Do đó, dựa trên sự cân đối giữa khả năng hấp phụ và hiệu suất tái sinh bằng xúc tác quang trong vùng ánh sáng khả kiến, composite WO₃/rGO được lựa chọn cho nghiên cứu sâu hơn của chúng tôi.

Hình 4. Kết quả phân hủy MB bởi vật liệu rGO, wa WO₃, WO₃/rGO được sử dụng lần đầu (a) và sau một chu kỳ tái sử dụng (b)

Hình 5. UV-Vis của dung dịch MB bị phân hủy bởi xúc tác WO₃/rGO theo thời gian (a) và sự ảnh hưởng của tỉ lệ rGO đến hoạt tính xúc tác quang của vật liệu WO₃/rGO (b)

Kết quả đo UV-Vis dung dịch MB theo thời gian xử lý bằng WO₃/rGO (Hình 5a) cho thấy cường độ hấp thụ cực đại của pic đặc trưng cho methylene blue giảm dần theo thời gian xử lí và đạt giá trị rất thấp (gần bằng 0) sau 2 giờ xúc tác quang. Với nồng độ MB được sử dụng cao hơn 50% [23] và thời gian phân hủy nhanh hơn 30% [24] so với những nghiên cứu trước đây cho thấy vật liệu WO₃/rGO có hoạt tính xúc tác quang cao. Kết quả khảo sát ảnh hưởng lượng rGO pha tạp đến hoạt tính của vật liệu WO₃/rGO (Hình 5b) cho thấy rằng nếu tăng lượng rGO trong mẫu > 0,300g thì có thể xảy ra sự cản quang và tái tổ hợp điện tích nên làm giảm hoạt tính xúc tác. Ngược lại khi lượng rGO trong mẫu nhỏ hơn 0,300g thì diện tích bề mặt nhỏ và có thể làm giảm độ nhạy quang của vật liệu. Vậy lượng rGO thích hợp cho việc pha tạp là 0,300g thì hiệu suất phân hủy MB là tối ưu nhất.

3.3. Kết quả khảo sát hoạt tính xúc tác quang của vật liệu trên sự phân hủy ciprofloxacin

Hình 6. Hiệu suất xử lí CIP bởi vật liệu rGO, WO3, WO3/rGO (a); sau 3 lần sử dụng xúc tác WO3/rGO (b)

Hiệu suất xúc tác quang của WO₃, rGO và WO₃/rGO không chỉ được kiếm chứng trên sự phân hủy phẩm nhuộm mà còn được kiểm tra trên sự phân hủy kháng sinh CIP (Hình 6a). Kết quả cho thấy hiệu suất phân hủy CIP của mẫu WO₃/rGO đạt hơn 95%, trong khi mẫu WO₃ đạt hiệu suất 50%, rGO 62%. Điều này hoàn toàn phù hợp với những kết quả phân tích thu được từ đặc trưng vật liệu. Đô bền của vật liêu WO₃/rGO cũng được khẳng đinh qua 3 lần sử dung để phân hủy CIP (Hình 6b). Hiêu suất xúc tác vẫn đat trên 87% sau 3 lần sử dung. Qua nghiên cứu chứng tỏ vật liêu WO₃/rGO có hoat tính xúc tác trên nhiều loại chất hữu cơ gây ô nhiễm khác nhau và có đô bền tốt sau nhiều lần sử dung. Điều này mở ra triển vong ứng dụng xúc tác trong thực tế xử lí một số chất hữu cơ bền, khó phân hủy sinh học, gây ô nhiễm môi trường.

4. KẾT LUẬN

Vật lệu WO₃ lai ghép rGO được điều chế đơn giản theo phương pháp sol gel kết hợp với nung. Kết quả đặc trưng vật liêu chứng tỏ có sư khử GO thành rGO và thành phần pha rGO và WO₃ vẫn giữ được sau khi lai ghép. Các nguyên tố C, W, O chiếm hầu hết trong mẫu WO₃/rGO điều này chứng tỏ có sư tao composite giữa các vật liệu. Vật liệu tổng hợp WO₃/rGO có thể thúc đẩy sự phân tách các hạt mang điện và tăng cường khả năng truyền electron hiệu quả. Kết quả là vât liêu nanocomposite WO₃/rGO cho thấy sự cải thiện hoạt tính xúc tác quang tăng đáng kể so với các vật liệu đơn lẻ trên sự phân hủy methylene blue và ciproflocaxin. Dưới sự chiếu xa ánh sáng khả kiến, hiệu suất phân hủy methylene blue đạt 98% sau 90 phút và CIP đạt 96% sau 120 phút. Hơn nữa, vật liêu WO₃/rGO thể hiên khả năng ổn đinh quang học và khả năng tái sử dung tốt sau ba lần thử nghiệm liên tiếp. Vì vậy, vật liệu nanocomposite WO₃/rGO là chất xúc tác đầy hứa hen để ứng dung trong xử lí các chất hữu cơ gây ô nhiễm dưới sự chiếu xa ánh sáng khả kiến.

Xung đột lợi ích: Các tác giả xác nhận hoàn toàn không có xung đột về lợi ích.

LỜI CẢM ƠN

Nghiên cứu này được tài trợ bởi trường Đại học Sài Gòn thông qua đề tài mã số CSB 2023-45.

TÀI LIỆU THAM KHẢO

[1] M. Feng, Y. Liu, Z. Zhao, H. Huang, Z. Peng, (2019). The preparation of Fe doped triclinichexagonal phase heterojunction WO₃ film and its enhanced photocatalytic reduction of Cr (VI). *Mater. Res. Bull.*, **109**, 168–174.

[2] S.K. Lakhera, H.Y. Hafeez, R. Venkataramana, P. Veluswamy, H. Choi, B. Neppolian, (2019). Design of a highly efficient ternary AgI/rGO/BiVO₄ nanocomposite and its direct solar light-

induced photocatalytic activity. *Appl. Surf. Sci.*, **487**, 1289–1300.

[3] N.-C. Zheng, Z. Wang, J.-Y. Long, L.-J. Kong, D.-Y. Chen, Z.-Q. Liu, (2018). Shape-dependent adsorption of CeO₂ nanostructures for superior organic dye removal. *J. Colloid Interface Sci.*, **525**, 225–233.

[4] K.E. Ahmed, D.-H. Kuo, M.A. Zeleke, O.A. Zelekew, A.K. Abay, (2019). Synthesis of $SnWO_3/g-C_3N_4$ composites with surface activated oxygen for visible light degradation of dyes. *J. Photochem. Photobiol. A Chem.*, **369**, 133–141.

[5] F. Guo, X. Huang, Z. Chen, H. Ren, M. Li, L., (2020). Chen, MoS_2 nanosheets anchored on porous $ZnSnO_3$ cubes as an efficient visible-light-driven composite photocatalyst for the degradation of tetracycline and mechanism insight. *J. Hazard. Mater.*, **390**, 122158.

[6] B. Appavu, S. Thiripuranthagan, S. Ranganathan, E. Erusappan, K. Kannan, (2018). BiVO₄ /N-rGO nanocomposites as highly efficient visible, active photocatalyst for the degradation of dyes and antibiotics in the ecosystem. *Ecotoxicol. Environ. Saf.*, **151**, 118–126.

[7] F. Guo, M. Li, H. Ren, X. Huang, W. Hou, C. Wang, W. Shi, C. Lu, (2019). Applied Surface Science Fabrication of p-n $CuBi_2O_4$ / MoS_2 heterojunction with nanosheets-onmicro rods structure for enhanced photocatalytic activity towards tetracycline degradation. *Appl. Surf. Sci.*, **491**, 88–94.

[8] N. Lu, P. Wang, Y. Su, H. Yu, N. Liu, X. Quan, (2019). Construction of Z-scheme g- $C_3N_4/RGO/WO_3$ with in situ photo reduced graphene oxide as an electron mediator for efficient photocatalytic degradation of ciprofloxacin. *Chemosphere*, **215**, 444–453.

[9] H. Sun, F. Guo, J. Pan, W. Huang, K. Wang, W. Shi, (2021). One-pot thermal polymerization route to prepare N-deficient modified g- C_3N_4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process. *Chem. Eng. J.*, **406**, 126844.

[10] Rodwihok C., Choopun S., Ruankham P., Gardchareon A., Phadungdhitidhada S., Wongratanaphisan D., (2019). UV sensing properties of ZnO nanowires/nanorods. *Appl. Surf. Sci.*, **477**, 159–165.

[11] G.R. Bamwenda, H. Arakawa, (2001). Visible light induced photocatalytic activity of tungsten trioxide powders. *Applied Catalysis A: General*, **210**, 181–191.

[12] T. Govindaraj, C. Mahendran, V.S. Manikandan, R. Suresh, (2020). One-pot synthesis of tungsten oxide nanostructures for enhanced photocatalytic organic dye degradation. *J. Mater. Sci. Mater. Electron.*, **31**, 17535–17549.

[13] H. Wang, L. Zhang, K. Wang, X. Sun,
W. Wang, (2019). Enhanced photocatalytic CO₂ reduction to methane over WO₃.0.33H₂O via Mo doping. *Appl. Catal. B Environ.*, 243, 771–779.

[14] S. Prabhu, L. Cindrella, O.J. Kwon, K. Mohanraju, (2017). Green synthesis of rGO-WO₃ composite and its efficient photoelectrochemical water splitting. *Int. J. Hydrogen. Energy.*, **42**, 29791–29796.

[15] H. Shi, S. Yang, C. Han, Z. Niu, H. Li, X. Huang, J. Ma, (2019). Fabrication of Ag/Ag₃PO₄/WO₃ ternary nanoparticles as superior photocatalyst for phenol degradation under visible light irradiation. *Solid State Sci.*, **96**, 105967.

[16] X. Hong, R. Wang, S. Li, J. Fu, L. Chen, X. Wang, (2020). Hydrophilic macroporous SnO₂/rGO composite prepared by melamine template for high efficient photocatalyst. *J. Alloy. Compd.*, **816**, 152550.

[17] H. Li, Z. Xia, J. Chen, L. Lei, J. Xing, (2015). Constructing ternary CdS/reduced graphene oxide/TiO₂ nanotube arrays hybrids for enhanced visible-light-driven photoelectrochemical and photocatalytic activity. *Appl. Catal. B Environ.*, **168–169**, 105–113. [18] X. Sun, S. Ji, M. Wang, J. Dou, Z. Yang, H. Qiu, S. Kou, Y. Ji, H. Wang, (2020). Fabrication of porous TiO₂-RGO hybrid aerogel for high-efficiency, visible-light photodegradation of dyes. *J. Alloy. Compd.*, **819**, 153033.

[19] Daolong Zhang, Zheng Liu, Rongmei Mou, (2022). Preparation and characterization of WO₃/ZnO composite photocatalyst and its application for degradation of oxytetracycline in aqueous solution. *Inorganic Chemistry Communications*, **142**, 109667.

[20] Swapnil J. Rajoba, Shrikrishna D. Sartale, Lata D. Jadhav, (2018). Investigating functional groups in GO and r-GO through spectroscopic tools and effect on optical properties. *Optik*, **175**, 312-318.

[21] Linyan Zhao, Xiaoli Xi, Yangsi Liu, Liwen Ma, Zuoren Nie, (2020). Facile synthesis of WO₃ micro/nanostructures by paper-assisted calcination for visible-lightdriven photocatalysis. *Chemical Physics*, **528**, 110515.

[22] Muhammad Ikram, et. al., (2021). RETRACTED ARTICLE: Crystalline growth of tungsten trioxide (WO₃) nanorods and their development as an electrochemical sensor for selective detection of vitamin C. *Journal of Materials Science: Materials in Electronics*, **32**, 6344–6357.

[23] Maria Covei, Dana Perniu, Cristina Bogatu, Anca Duta, Ion Visa, (2022). Photocatalytic composite thin films with controlled optical properties based on TiO_2 , WO₃ and rGO. *Surfaces and Interfaces*, **31**, 102075.

[24] Ting Zhao, Ruifeng Qian, Guanda Zhou, Yu Wang, Wan In Lee, Jia Hong Pan, (2021). Mesoporous WO_3/TiO_2 spheres with tailored surface properties for concurrent solar photocatalysis and membrane filtration. *Chemosphere*, **263**, 128344.