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Abstract

IoT anomaly detection faces challenges due to the rarity of IoT anomalies and the
limited availability of labels. Recent weakly-supervised approaches, like Feature Encoding
with AutoEncoder and Weakly-supervised Anomaly Detection (FeaWAD) and an improvement
on FeaWAD (iIFWAD), address this scarcity by constructing detectors from a combination
of unlabeled data and a small labeled anomalous set. While effective, these methods lack
constraints during the feature learning stage to delineate normal regions from anomalies.
Notably, the Shrink AutoEncoder promotes clustering of normal data around the origin while
preserving space for anomalies. Drawing inspiration from the Shrink AutoEncoder, the study
aims to introduce Shrink iFWAD (called sSFWAD), embedding a shrink regularizer into iFWAD.
This term compels the feature encoder of sSFWAD to learn penalizing normal data that is close
to zero, while simultaneously pushing IoT anomalies further away from zero. This process
facilitates the anomalous score generator of SFWAD in efficiently identifying IoT anomalies.
The proposed method is evaluated against state-of-the-art weakly-supervised techniques and
other common anomaly detection methods using the N-BaloT' dataset. Experimental results
indicate that SFWAD often surpasses recent weakly-supervised methods as well as the common
techniques in IoT anomaly detection performance. For identifying unknown/new IoT anomalies,
Missed Detection Rate from sFWAD (0.008) is much lower than those from iFWAD (0.026)
and RoSAS (0.015).

Index terms

Weakly-supervised, latent representation, Iol' anomaly detection, IoT botnet detection.

1. Introduction

Anomaly detection has found many applications across various domains, such as
cyberattack detection, ol anomaly detection, fraud detection, and healthcare. One of the
biggest challenges of this field is the rarity of anomalies and their corresponding labels.
In cybersecurity, particularly IoT anomaly detection, anomalies are inherently scarce and
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difficult to collect, contrasting to the abundance of accessible normal data [1]. Machine
learning (ML), particularly deep learning (DL), is extensively applied in diverse security
contexts, including the detection of malicious codes, network anomaly detection and IoT
botnet detection [2]-[6]. These methodologies consist of both supervised [2], [7], [8],
unsupervised [9]-[11] as well as weakly-supervised learning [12], [13] approaches.

Given unlabeled data along with a small number of labeled IoT anomalies, the weakly-
supervised learning approach has proven to be the most viable strategy [14], [15]. Broadly,
weakly-supervised anomaly detection methods amalgamate elements from both supervised
and unsupervised learning paradigms to identify anomalous patterns within data. The study
carried out under the assumption that a small proportion of anomalies may be interspersed
within the normal data during training, albeit typically in significantly lesser quantities
compared to normal data [12], [13]. Thus, weakly-supervised learning can offer a promising
avenue for mitigating the challenge of scarcity in anomaly detection, leveraging both labeled
and unlabeled data to enhance detection accuracy.

Recent studies, such as [6], [12], [16], have introduced end-to-end weakly supervised
methods for dealing with the lack of labeled anomaly data. These methods construct models
capable of generating anomaly scores for query points using a combination of a few labeled
anomalies and a larger volume of unlabeled data. The unlabeled dataset predominantly
consists of normal instances, with a minor fraction of anomalies. One notable method,
introduced by Zhou et al. [6], is the FeaWAD method. FeaWAD comprises two main
components: a Feature Encoding Network (FEN) and an Anomaly Score Generator (ASG).
This method employs a two-stage learning process, where the FEN is pre-trained for feature
representation, followed by training the entire network to generate anomaly scores. However,
the FEN, which utilizes a standard AutoEncoder, learns to represent features without any
regularizers that could distinguish anomalies from normal data. This limitation persists even
in the enhanced version of FeaWAD presented by Nguyen et al. [16].

Interestingly, Cao et al. [9] introduced the Shrink AutoEncoder (SAE) as a means to
acquire a latent representation tailored for anomaly detection tasks. Through the integration
of a shrink regularizer, this representation encourages normal data to cluster near the origin
while preserving the remaining feature space for potential anomalies. Notably, SAE is
constructed exclusively using normal data. Drawing inspiration from SAE [9], our objective
is to incorporate a shrink regularizer into FeaWAD, thereby introducing our method, Shrink
FeaWAD (sFWAD). In essence, the shrink term is embedded within the loss function of
FEN, enhancing the feature representation during the pre-training stage and facilitating ASG
during fine-tuning. To examine the contribution of the shrink regularizer to sSFWAD, this
study operates under the assumption that unlabeled IoT data remains uncontaminated by [oT
anomalies. This is also followed the same strategy used in [6], [12]. The scenario involving
unlabeled IoT data contaminated with IoT anomalies is deferred to future research. In this
study, the N-BaloT dataset [17] is employed for evaluation of our proposed method in which
two types of botnet attacks (i.e., Gafgyt and Mirai) are considered as IoT anomalies. Thus,
two concepts such as Iol' anomalies and IoT attacks can be used interchangeably in this
study. Detailed descriptions of our proposed method are provided in Section 4.
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The main contribution of this study can be listed as follows:

1) Propose a novel sSFWAD method with a shrinkage regularizer to improve the
performance of recent weakly-supervised methods for IoT anomaly detection.

2) Design a series of experiments to assess the effectiveness of our proposed method,
sFWAD, in contrast to the most recent weakly-supervised methods and conventional
anomaly detection techniques using the N-BaloT dataset. Our thorough analysis and
discussion of the experimental outcomes highlight the strengths and limitations of
sFWAD, along with proposing future research directions.

The structure of this paper is shown as follows. Section 2 and 3 introduce two end-to-
end weakly-supervised methods as well as brief discussion on recent weakly-supervised
approaches for anomaly detection. Section 4 presents our proposed method, SFEWAD that
tackles the challenges identified in this study. Section 5 describes experimental analysis and
compares with relevant studies. Finally, Section 7 concludes the paper by discussing the
findings and future works.

2. Background on weakly-supervised approaches

This section briefly provides a general problem statement for weakly-supervised learning
approach. Following this, two weakly-supervised anomaly detection methods, namely
FeaWAD [6] and iFWAD [16], are presented.

Generally, weakly-supervised methods for anomaly detection are methodologies that
integrate aspects of both supervised and unsupervised learning to detect anomalous patterns
within data. This technique proves especially beneficial in situations where labeled data is
scarce [12], [13]. Let’s consider a training dataset X consisting of N 4 K elements denoted
as X = {x1,...,oN, N1, -, LN+ K }» Where each x; belongs to the d-dimensional space.
Here, Xy =  {a1,29,..,xy} represents the unlabeled data (U), while
Xk = {xN41,TN42, ., TNk} 1s @ small set of labeled anomalies (P), where K < N.
Note that Xy may contain both unlabelled normal data and a contamination of anomalies.

Weakly-supervised methods aim to construct a scoring function ¢ : X +— R from the
training data of U and P. The function ¢ can assign anomalous scores for querying data
points. This function should ensure that for any given anomalous data object x;, its score
will be higher (¢(x;) > ¢(x;)) compared to a normal data object z; [12].

2.1. The FeaWAD method

Zhou et al. [6] introduced a method, called FeaWAD, for working on unlabelled data
with a small set of anomalies. FeaWAD consists of two components, namely FEN using an
AutoEncoder (AE) and ASG using Multilayer Perceptron Network (MLP), as depicted in
fig. 1. In overview, FeaWAD is trained in a two-stage approach: (1) training FEN on the U
set to obtain a new feature representation, and (2) co-training FEN and ASG on U and P for
generating anomaly score.
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Anomaly Score
Generator

Fig. 1. The network structure of FeaWAD [6].

Initially, FEN (an AE) decomposes the input data (U) into three distinct elements: hidden
representation denoted as h, reconstruction error symbolized by e, and residual vector
represented as r. These components are integral to the model’s data representation strategy.
The calculation formulas are respectively:

h = fen(xi;Wen)v (1a)
p= T (Ic)
|7 — zilla

where W, and f.,,(-, W,,) refer to the encoder’s parameters, and the mapping function for
the encoding process, respectively. Wy, and fg4 (-, Wy.) are also the decoder’s parameters
and the mapping function for the decoding process. x; is the reconstruction value of x; € U,
and calculated by ©; = fu.(h; Wae). || - || is the Euclidean norm.

To estimate anomaly scores, the ASG computes each layer’s output, 2, follows a specific
formula as follows,

2= f(WEz y + b, +whe), ke{l.n}, ()

where W is the weight matrix, by, is the bias parameters for the k-layer. At the first layer
(k—1), z;_1 is assigned by the combination vector [r, h], while at the last layer, z;, determines
the score s, for anomaly decision.

Thus, the FeaWAD network is composed of two components: a feature encoding network
(FEN) ¢ (-, © ) and anomaly score generator (ASG) ¢(+, ©,). The © ; and O, are parameters
of models FEN and ASG, respectively. Given an input sample x;, FEN extracts three factors
h;,r;, e; as described Eq. (1a), (1b) and (1c). The entire network is represented as the function
(x50 5;0,), or ¢(z;) in short.
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The following formula shows how the loss function of the FeaWAD is calculated:
L(@f, @a) = Ld(@fa @a) + )\Le(@f)a (3)

where, L. = ) .(1 — y;)e; + y; max(0, ap — €;) is the reconstruction error on both U and P
in which encourages the reconstruct of U while prevents the learning from P, resulting the e
to be larger than ag; ay is a predefined margin of e; Ly = Y .(1 —y;)|¢(x;)| +v; max(0, ag —
¢(x;)) is the loss function of ASG that helps ASG produce the anomalous cores of anomalies
that are higher than ag; and y; € {0, 1} is the label of samples (y; = 1 if the sample is an
anomaly), and A is the trade-off parameter between the two components. Thus, FeaWAD can
learn to encourage FEN to reconstruct well for U and reproduce poorly for P, while helping
ASG to generate anomaly scores for distinguishing between anomalies and normal data.

The network undergoes a two-phase gradient descent training. The first phase involves
pre-training the FEN ¢(-; O) using reconstruction loss Ly.,(©7) = ). e;, where e; is
defined in Eq. (1b). FEN is trained on unlabeled dataset (U) to establish a foundational
encoding strategy. Following this, the entire network ¢(-; ©; O,) is fine-tuned with both
unlabeled dataset (U) and labeled anomalous data (P) for generating anomalous score. Note
that, a balanced mini-batch training approach is adopted for the fine-tuned stage. This means
that equal numbers of unlabeled and anomalous samples are used, leading to a more frequent
selection of anomalies.

2.2. The iFWAD method

This section briefly presents a recent improvement on FeaWAD, iFeaWAD (iFWAD for
short) from the study [16]. This refinement is the basis for us to evaluate and develop our
proposed method in the following parts.

iFWAD is focused on adjusting the value of r within the triple values h, e, and r of the
FeaWAD model. Instead of employing the original formula (#; — z;) as shown in Eq. (1c),
the authors use the absolute value |#; — x;|. This enhancement arises from the utilization
of the ReLLU activation function in the original method. If the component e goes with the
absolute, all elements of the input vector [r, h| are non-negative. This can make the training
process of ASG become easier. This adjustment can streamline the training process of ASG.
Here, the authors prioritize the actual values of the input data for ASG over the directional
aspects of the input vector.

Furthermore, the authors introduce an additional hyperparameter, denoted as o, which
serves to scale r for input into ASG. The aim is to guarantee that the input features obtained
from r for ASG are minimized, potentially smaller when compared to those derived from
h. Empirically, the value of o was set to 10~°. Then, the formula of r can be rewritten as
follows: )

7 | — i
1€ — @ill2

“)

The latent representation / and the RE e are followed as the same as in the original study [6].
Other hyper-parameters and the two-stage training process are also based on FeaWAD.
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3. Related work

In a weakly-supervised manner, some recent works have explored anomaly detection with
extremely unbalanced data, using the scarce but useful anomalous samples [12], [13], [15].
A feedback-guided anomaly detection framework was proposed by Siddiqui et al. [18]. The
model can potentially enhance unsupervised anomaly detection by leveraging the analyst’s
existing knowledge to allocate elevated scores to instances more likely to be anomalous.
Ruff et al. [13] presents Deep SAD (an extended version of Deep SVDD [19]), an end-
to-end methodology for anomaly detection that utilizes both labeled and unlabeled data.
It introduces an information-theoretic perspective, suggesting that the entropy of normal
data’s latent distribution should be lower than that of anomalous data. Deep SAD introduced
a novel loss based on the information-theoretic analysis to pull the normal data towards
a fixed centroid and push the anomalies away. In [12], Pang et al. propose an anomaly
detection model with a scenario for limited labeled anomaly data and unlabeled data. The
model transforms the anomaly detection task into an ordinal regression problem of pairwise
relationships, using the full number of labeled anomaly samples to form sample pairs for the
next anomaly detection process.

In [6], Zhou et al. propose an AE-based method to extract three components, including
hidden representation, reconstruction error, and reconstructed residual vector, to characterize
each input data. These features are then used to generate the anomaly generator, which
is used to classify the data as normal or out of the ordinary. Our research is based on
this research idea, with improvements in specific components to improve the efficiency
of anomaly detection for IoT networks. Pang et al. [14] present PReNet, a novel method
that can detect known and unknown anomalies by learning and predicting the relationships
between data pairs, significantly outperforming other methods. In [20], Xu et al. introduce
a weakly-supervised anomaly detection method that’s robust against unlabeled anomalies,
using continuous supervision to improve detection accuracy, especially in IoT networks.

Despite progress, Iol' anomaly detection research faces limitations such as data scarcity,
model generalization challenges, adaptability issues, computational intensity, and high false
alarm rates. Future efforts should focus on creating more efficient, adaptable detection
methods suitable for the dynamic IoT environment.

4. Proposed method

Beginning with the assumption that a significant portion of 10T data comprises benign
samples with a limited number of IoT labeled anomalies, it’s observed that these benign
samples often exhibit common traits, rendering them more likely to cluster in localized
regions. Conversely, IoT anomalies tend to diverge from each other, manifesting in low-
density regions. In a study conducted by Cao et al. [9], the authors introduced the concept
of a SAE incorporating a shrink regularizer within its loss function. By employing this
regularizer to compress normal data towards the origin, the SAE can effectively generate a
“favorable” latent representation conducive to anomaly detection. Consequently, in the latent
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space, normal samples are compelled to congregate near the origin, while anomalies are
anticipated to manifest at a considerable distance from it.

Drawing inspiration from this concept, the research objective is to integrate a shrinkage
term into the iIFWAD method, thus giving rise to SFWAD. Essentially, this involves penalizing
the h values of benign data to approximate zero, while encouraging those of IoT anomalies
to be far from zero. This can enhance the differentiation between benign data and IoT
anomalies within the latent feature space of FEN. This enhancement in discrimination aids
the subsequent component, ASG, in learning anomalous scores crucial for identifying loT
anomalies. Concretely, the shrink regularizer applied to the value of h is incorporated into
two key training stages of FEN. Firstly, during the pre-training of FEN, the shrink regularizer
(the 2"? term in Eq. (5)) will penalize the latent values of benign data to approximately zero.
Note that this study is carried out under the assumption that unlabeled IoT' data remains
uncontaminated by IoT anomalies. Secondly, during the end-to-end training SFWAD, the
shrink regularizer forces FEN to reprensent benign data to be close to zero, pushing 10T
anomalies far away from zero. This is illustrated in the Eq. (8). This integration is manifested
by augmenting the reconstruction error term, as denoted by Eq. (1b), with the shrinkage term
to yield e* as delineated in Eq. (5) below,

" = e+lhllz = |2 — zill2 + yllhill2, ®)
where the second term in (5) is the shrinkage with a trade-off parameter ~.

Hidden representation A and residual vector r* are keep as in Eq. (1a) and (4). Based on
the modification in Eq. (5), when rewriting the formula for ASG, z; will be recalculated
according to the following formula:

Z;:, = f(ffflzk,l + bk +w
= f(ff,flzk_l + bk +w

e’)

(2 = zill2 + vl hall2))-

Hence, our proposed method, sSFWAD, comprises two components akin to FeaWAD and
1IFWAD, albeit with alterations concerning the input of ASG and the loss functions of FEN
across two distinct training stages. Consequently, the FEN component within sSFWAD is
symbolized as (-, @’}), and, while the subsequent ASG component is also represented as
©(:, ©}), where ©} and O, denote the respective parameters of FEN and ASG. The entire
network is denoted as ¢*(;, 0}, ©;) or more concisely as ¢*(z;).

(6)

(b;v(‘h*?r‘

The formula in Eq. (3) can be rewritten for the loss function of SFWAD as follows:
L(0%,05) = Ly(©},05) + AL (7). ™)

The second component of the loss Eq. (7), L} contains the shrink regularizer, ||||2. The
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specific formula for L is rewritten as in Eq. (8) below:

L = Z (1 —y;)e; +y;max (0,a9 — €})

)

= Z (1= wi)(ei +7l[Pill2) + i max (0, ap — (e; + | hill2)) (8)

=3 (1 =) (|IF: — zill2 + YN ill) + yi max (0, ag — ([l — will2 + ¥I|Pill2)),
where h;,e; are extracted from the input sample z; by Eq. (1a), (1b), respectively. L
encourages FEN reconstruct well on unlabeled data as well as penalize the latent vector £,
while preventing FEN from learning on anomalies.

First term L7 in the loss function of SFWAD can be obtained by replacing ¢* from L, as
follows,
Ly =Y (1 —y)|¢" ()| + yi max (0, a0 — 6" (). ©)
Again, this term aims to encourage the anomalous cores of anomalies being higher than the
threshold a(, while that of normal data being close to zero.

Similarly to FeaWAD, our proposed method uses a two-stage training process. In the
first phase, FEN 1(-; ©%) is trained with the loss function L., (©%) = ), ;, where €] is
described in Eq. (5). The unlabeled dataset (U) is involved in the process to establish the
pre-trained FEN model for the second training phase. Subsequently, SFWAD ¢*(-; b3 Or)is

fine-tuned with both U and P for generating anomalous score.

In real-world scenarios, the unlabeled dataset (/) may contain normal examples along
with a small proportion of IoT anomalies. Despite this, the majority of the unlabeled dataset
still consists of normal data. Consequently, the shrink regularizer can assist FEN in learning
a “good” representation from both U and P, ultimately leading to efficient performance of
sFWAD. Additionally, a study by Nguyen et al. [21] suggested that SAE [9] with a shrink
regularizer can perform efficiently with up to 5% contamination of anomalies.

5. Experiments

Our experiments are designed to investigate our proposed method in two scenarios:
identifying known IoT anomalies and identifying unseen IoT anomalies. The first scenario
aims to test its performance in identifying IoT anomalies from the same category used
for training. In the second scenario, we aim to explore its ability to detect unseen/new
types of IoT anomalies. The performance of sSFWAD is evaluated in comparison to that of
FeaWAD, as originated in [6], and its development version iFWAD [16], as well as two
recent weakly-supervised learning methods: Prenet [14] and RoSAS [20], and well-known
anomaly detection methods. The well-known methods consist of Isolation Forest (IF), Local
Outlier Factor (LOF), and One-class Support Vector Machine (OCSVM). The N-BaloT
dataset [17] is utilized for evaluation of the above methods. The two types of botnet attacks
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(i.e. Gafgyt and Mirai) from N-BaloT are considered as IoI’ anomalies, thus, the concepts of
IoT anomalies and IoT attacks are used interchangeably in this study. The performance of
these methods is measured using the metrics outlined in Subsection 5.3. For experimental
settings, the dataset description, parameter settings, and evaluation metrics are presented in
the subsections below.

5.1. Datasets

The N-BaloT dataset!, which was originally introduced by the authors from the Ben-Gurion
University of the Negev (BGU) [17], is employed for evaluated our proposed model. N-BaloT
encompasses data from nine different IoT devices from four categories such as doorbells,
thermostats, monitors, and cameras/webcams. Each traffic connection is characterized by
115 features, providing a ready-to-used data for analysis and machine learning/deep learning-
based methods. The details of N-BaloT are shown in table 1.

The dataset consists of two well-known botnet types, namely Gafgyt and Mirai as well as
benign traffic. These botnets are used to infect IoT devices and launch DDoS attacks. Gafgyt
mainly uses SYN, UDP, and ACK Flooding attacks, while Mirai is often highly sophisticated
and dangerous to various IoT devices with different kinds of DDoS attacks (i.e. based on
TCP, UDP and HTTP protocols). Thus, these botnets can yields multiple DDoS attacks
resulting in the variety of network traffic patterns from the infected devices.

Table 1. The description of the NBaloT dataset

ID Device Name Type Benign Gafgyt Mirai
D1 Danmini Doorbell 49548 652100 316650
D2  Ecobee Thermostat 13113 512133 310630
D3  Ennio Doorbell 39100 316400

D4  Philips BI20N10 Monitor 175240 312273 610714
D5  Provision PT 737E Camera 62154 330096 436010
D6  Provision PT 838 Camera 98514 309040 429337
D7  Samsung SNH 1011 N Webcam 52150 323072

D8  SimpleHome XCS7 1002 WHT  Camera 46585 303223 513248
D9  SimpleHome XCS7 1003 WHT  Camera 19528 316438 514860

The original data from table 1 is sampled to create datasets for the two scenarios mentioned
above. Initially, data from each IoT device undergoes random sampling, allocating 80% for
training and 20% for evaluation purposes. In the scenario aimed at identifying known IoT
attacks, Gafgyt is selected for experimentation due to the absence of Mirai on certain IoT
devices (specifically, D3 and D7). Normal instances within the training dataset are considered
as an unlabeled dataset (Uy ), while a small portion of Gafgyt instances is randomly selected
to form a labeled IoT anomaly set (7). The size of IoT anomaly set versus the unlabelled set is
randomly generated within the range (2%, 20%) for each IoT device, with actual proportions
displayed in the “Outlier Perc” column of table 2 from 3.85% to 18.03%. This variation in
data ratios contributes to a more precise evaluation of the experimental outcomes.

"https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaloT
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For the scenario detecting unseen or new IoT attacks, if Gafgyt is utilized for training, Mirai
will be employed for evaluation, and vice versa. The proportion of labeled IoT anomalies for
each IoT device remains consistent with that of the first scenario. However, IoT devices D3
and D7 are excluded from this experiment due to the absence of Mirai on these devices.

5.2. Parameter settings

Firstly, the hyper-parameters of FeaWAD, iIFWAD and sFWAD are used as FeaWAD
reported in the original study [6]. For these methods, FEN consists of three hidden layers
{100, 50, 100} and an input (also an output) layer of 115 neurons, while ASG has two hidden
layers of {256, 32} and an output layer of 1 neurons. Following the recommendations outlined
in [6], the parameters, specifically the margin (ag) and A, are configured to values of 5 and
1 respectively. Additionally, the learning rate is set to a conventional value of 1073, These
methods are trained on 100 epochs with the batch size of 64. In addition, the o parameter of
sFWAD is set to 10~° followed iFWAD in [16]. The parameter ~y for trading off two terms of
the FEN loss in sSFWAD is equal to 5 followed the study [9]. Furthermore, Prenet and RoSAS
are configured with parameters consistent with those outlined in their original studies [14],
[20]. Similarly, the IF, LOF, and OCSVM methods utilize default parameter values.

All experiments were implemented in Python using the Keras, scikit-learn, and Tensorflow
frameworks. We ran the experiments on a computer with Ubuntu 22.04 LTS, an Intel(R)
Core 15 11400H CPU, 24 GB of RAM, and a Geforce 3050 GPU.

5.3. Evaluation metrics

In experiments, we utilize the Area Under the Curve (AUC') as a key metric to evaluate
the performance of both the proposed models and those related to our study. The AUC is the
entire area below the Receiver Operating Characteristic (ROC) curve. The ROC curve shows
the true positive rate (TPR) versus false positive rate (FPR) for different thresholds.

TP FP
=——— _ FPR=——
TP+ FN’ R FP+TN’

where TP, TN, FP and FN refer to True Positives, True Negatives, False Positives and False
Negatives, respectively. Thus, AUC' can measure the performance for all possible thresholds.

TPR (10)

To further assess the precision of these models, we incorporate two additional measures:
False Alarm Rate (F"AR) and Missed Detection Rate (M D R) as in Eq. (11). F’AR measures
the proportion of negative samples that are incorrectly classified as positive, while M DR
measures the proportion of positive samples that are incorrectly classified as negative. These
metrics are instrumental in quantifying the models’ ability to accurately identify true positives
while minimizing the instances of false alerts and overlooked anomalies.

FP FN

FAR= —— DR= ——— .
& FP+ TN’ I FN +TP

(1D
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6. Results and discussion

This section provides analysis and discussion on the experimental results of the two
scenarios. Tables 2 and 3 illustrate the results for the first scenario, while the results for the
second scenario are shown in Tables 4 and 5.

6.1. Known IoT anomaly detection

This section analyzes the experimental results of the first scenario: training and evaluating
on the same type of Iol' anomalies (i.e. Gafgyt) with the AUC metric. Please note that
FeaWAD, iIFWAD, and sFWAD follow a two-stage training process: (1) pre-training their
initial component (FEN) on an unlabeled dataset (Uy); (2) conducting end-to-end training on
the entire network using both U and P datasets. In contrast, well-known methods such as IF,
LOF, and OCSVM utilize a different approach where the unlabeled dataset (U ) is combined
with the labeled IoT anomaly dataset (P) to create a normal dataset with contamination of
IoT anomalies. In addition, we further investigates the performance of these methods in terms
of the FFAR and M D R metrics. This is done on the device D1 using both Gafgyt and Mirai
for evaluation.

Table 2. Performance on identifying known anomalies

D Outlier AUC
Perc IF LOF OCSVM FeaWAD iFWAD Prenet RoSAS sFWAD

D1 18.03 | 0.958 0.365 0.970 0.979 0.987 0.980 0.989 0.994
D2 14.53 | 0.963 0.340 0.976 0.979 0.987 0.979 0.990 0.993
D3 291 | 0.927 0.537 0.967 0.962 0.986 0.989 0.990 0.990
D4 741 | 0971 0446 0.980 0.979 0.990 0.979 0.990 0.990
D5 6.54 | 0977 0.349 0.981 0.979 0.990 0.977 0.995 0.990
D6 1597 | 0950 0.345 0.955 0.979 0.990 0.969 0.984 0.989
D7 15.25 | 0.888 0.364 0.900 0.982 0.989 0.989 0.990 0.973
D8 18.70 | 0.955 0.365 0.960 0.986 0.909 0.990 0.963 0.993
D9 3.85 | 0986 0.552 0.985 0.985 0.988 0.989 0.990 0.995

The results from table 2 indicate that well-known learning methods (IF, LOF, OCSVM)
often yield lower AUC' values compared to other weakly-supervised learning methods across
all IoT devices. This can be attributed to the inherent limitations of shallow/stand-alone
methods such as OCSVM, LOF, and IF, which are typically less powerful than deep/end-to-
end methods, as demonstrated in [9].

When focusing exclusively on weakly-supervised learning methods, it becomes evident that
our proposed method, sSFWAD, consistently showcases significant performance superiority
over both the original FeaWAD and the previously enhanced iFWAD. For instance, consider
device D3: sFWAD demonstrates a notably higher AUC' of 0.990 compared to FeaWAD’s
AUC of 0.962. Similarly, in comparison to iFWAD, sFWAD consistently outperforms
across nearly all devices, except for datasets D4 and D7. In addition, our method, sSFWAD,
outperforms both Prenet and RoSAS across the majority of IoT devices. Specifically, sSFWAD
achieves superior performance on 7 datasets compared to RoSAS’ 4 datasets. Regarding
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Table 3. Evaluate F AR and M DR on D1 in identifying known anomalies

Gafgyt Mirai
Model ' —Gc—FAR MDR [ AUC FAR MDR
IF 0963 0039 0393 | 0.985 0.008 0.045
LOF | 0340 0.161 0899 | 0346 0.170 0.949
OCSVM | 0976 0.023 0.129 | 0985 0.010 0.056
FeaWAD | 0079 0.003 0017 | 0.353 0.006 0.034
iFWAD | 0987 0003 0017 | 0989 0.003 0011
PreNet | 0979 0012 0015 | 0988 0.003 0012
RoSAS | 0990 0.040 0.006 | 0.989 0.006 0.009
sSFWAD | 0.993 0.002 0.006 | 0.993 0.003 0.007

Prenet, sSFWAD consistently produces higher AUC' values, with the exception of the 7th
device.

Apart from AUC, we also investigate the efficiency of our proposed method using the
FAR and M DR metrics. For this analysis, data from the first device is selected. The
experimental results are presented in table 3. These results indicate that SFWAD outperforms
across all three criteria: AUC, FAR, and M DR. Notably, the false alarm rate and
misidentification rate of SFWAD are considerably low. Specifically, according to the FAR
criterion, iIFWAD, Prenet, and sFWAD yield identical results on the Mirai data. Regarding
the M DR criterion, SFWAD and RoSAS produce equivalent results on the Gafgyt dataset.

6.2. Unknown IoT anomaly detection

This section provides analysis on the performance of our proposed method on unseen
or new loT attack type. Specifically, if the Gafgyt attack is utilized for training, the testing
phase will consist of the Mirai attack, and vice versa. Other training and testing processes are
followed as in the first scenario in Subsection 6.1. We also carry out two investigations such
as evaluating the methods with the AUC' metric on 7 devices, and further analysis the F' AR
and M D R on the device D1. The results obtained are presented in table 4 and 5, respectively.

In the realm of well-known anomaly detection methods, Table 4 highlights the superiority
of our approach, sSFWAD, over established techniques like IF, LOF, and OCSVM across two
cases: training on Gafgyt and testing on Mirai, and vice versa. Notably, when compared with
FeaWAD and iFWAD, sFWAD consistently delivers superior outcomes across most devices,
with the exception of D6 and D9 in identifying Mirai, where competitive performance is
observed. The superior performance of SFWAD over iFWAD in identifying unknown attacks
can be attributed to the shrink regularizer’s role in facilitating FEN to learn a “good” latent
representation for sSFWAD. This regularization compels benign data to cluster near zero,
while known IoT attacks are pushed away from this region. Since unknown IoT attacks
typically exhibit distinct characteristics from benign data, they are mapped to significantly
different positions than benign data within the hidden layer of FEN, appearing far from
zero. Furthermore, in comparison to cutting-edge methodologies like Prenet and RoSAS,
sFWAD exhibits notably better performance. A closer examination reveals that sSFWAD
tends to perform better in detecting Mirai anomalies, while Prenet and RoSAS excel in the
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Table 4. Performance on identifying unknown/new anomalies

ID Data Outlier AUC
Perc IF LOF OCSVM FeaWAD iFWAD Prenet RoSAS sFWAD
DI G/M 18.03 | 0985 0.476 0.980 0.986 0.967 0.806 0.611 0.987
M/G 18.03 | 0.803 0.162 0.972 0.984 0.822 0.990 0.987 0.987
D2 G/M 14.53 | 0.987 0.473 0.982 0.939 0.988 0.987 0.602 0.990
M/G 1453 | 0.867 0.136  0.962 0.892 0.972 0.990 0.990 0.990
D4 G/M 741 | 0987 0.695 0.985 0.626 0.924 0.987 0.595 0.987
M/G 741 | 0966 0.070 0.981 0.987 0.987 0.989 0.987 0.983
D5 G/M 6.54 | 0.987 0.610 0.986 0.988 0.983 0.611 0.791 0.989
M/G 6.54 | 0.983 0.055 0.981 0.984 0.987 0.986 0.980 0.987
D6 G/M 1597 | 0987 0462 0.981 0.989 0.989 0.640 0.729 0.989
M/G 1597 | 0516 0.162 0.971 0.636 0.988 0.990 0.990 0.989
D8 G/M 18.70 | 0975 0.480 0.979 0.973 0.806 0.592 0.684 0.985
M/G 18.70 | 0.906 0.170 0.972 0.653 0.792 0.990 0.990 0.986
D9 G/M 385 | 0979 0.686 0.987 0.988 0.988 0.943 0.749 0.988
M/G 385 | 0970 0.034 0.983 0.984 0.982 0.989 0.985 0.989

context of Gafgyt anomalies. Overall, our proposed method demonstrates a consistently
stable performance with a higher frequency of superior results.

Interestingly, training on Gafgyt and testing on Mirai lead to the better performance of
sFWAD comparing to the others over all devices. The results can be explained that Gafgyt
is quite similar to benign, whereas Mirai is more deviated. Hence, training on Gafgyt and
testing on Mirai can be slightly easier than training on Mirai for detecting Gafgyt. This
statement has been discussed and confirmed in a previous study [10]. In some instances,
when trained on Mirai and tested on Gafgyt, Prenet performs better than sSFWAD on D2, DS,
and D9, while sFWAD yields better results on D5.

In the context of FFAR and M DR, table 5 provides a comprehensive evaluation of the
methods concerning unseen or new oI’ anomalies originating from D1. Notably, when the
model is trained on Gafgyt and tested on Mirai, the sSFWAD method emerges as the clear
frontrunner, showcasing superior performance across all evaluation metrics. However, in the
scenario where training occurs on Mirai and testing on Gafgyt, while sSFWAD maintains
its lead in terms of AUC and M DR, Prenet demonstrates a more favorable outcome in
F AR. These findings underscore the specific strengths of SFEWAD within certain training
and testing contexts while also indicating areas for potential enhancement to achieve more
consistent and comprehensive performance across all evaluation criteria. Overall assessment,
sFWAD gives higher AUC values and lower ' AR than the original FeaWAD method, as
well as other competing methods.

In summary, the proposed sFWAD method generally performs better on identifying unseen
and new IoT anomalies, particularly on Mirai. When trained on Mirai and tested on Gafgyt,
it shows slightly competitive performance to the latest methods, Prenet and RoSAS. This
will be a focal point for improvement in our future research.
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Table 5. Evaluate F AR and M DR on D1 in identifying unknown/new anomalies

Model Gafgyt/Mirai Mirai/Gafgyt
AUC FAR MDR | AUC FAR MDR
IF 0.987 0.004 0.027 | 0.867 0.073 0.448
LOF 0.473 0.103 0.604 | 0.136 0.170 0.800
OCSVM | 0982 0.017 0.100 | 0962 0.026 0.154
FeaWAD | 0939 0.012 0.068 | 0.892 0.089 0.524
iFWAD | 0988 0.067 0397 | 0972 0.004 0.026
PreNet | 0987 0.006 0.037 | 0990 0.001 0.015
RoSAS | 0.602 0.066 0.389 | 0.990 0.002 0.012
sFWAD | 0.990 0.004 0.022 | 0.991 0.015 0.008

7. Conclusion and future work

This study introduces a novel approach called sSFWAD, which integrates a shrink
regularizer into the FeaWAD method. This integration empowers sFWAD to learn a more
refined representation of normal IoT data during pre-training, subsequently producing
precise anomalous scores during fine-tuning. By effectively distinguishing IoT anomalous
data from benign points, sFWAD significantly enhances the accuracy of anomaly detection
models.

The sFWAD method represents a state-of-the-art solution for identifying anomalies in [oT
networks. Through comprehensive evaluations against recent weakly-supervised techniques
and conventional anomaly detection methods using the N-BaloT' dataset, our proposed
method consistently outperforms recent approaches, demonstrating superior performance in
IoT anomaly detection.

Moving forward, we plan to enhance the sSFWAD method by prioritizing improvements in
computational efficiency and extending its applicability across diverse IoI' environments.
Additionally, our future efforts will focus on enabling real-time detection capabilities and
integrating advanced feature selection techniques, deep learning models, and collaborative
frameworks. These enhancements aim to further elevate the accuracy and robustness of
sFWAD in IoT anomaly detection tasks.
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HOC DAC TRUNG BAN GIAM SAT DUA TREN
KY THUAT NEN DE TANG CUONG PHAT HIEN
BAT THUONG MANG IoT

Nguyén Hitu Noi, Tran Nguyén Ngoc, Cao Vin Loi

Tém tit

Phat hién bat thudng trong mang ToT dang phai d6i mat véi nhiing thach thic do ¢6 nhiéu khé
khan trong viéc thu thap va gan nhin cho di liéu bat thuong ndi chung cung nhu dit liéu tin cong
noi riéng. Cac phlIdng phap gin day dya vao glarn sat yéu, nhu FeaWAD va iFWAD, da giai quyet
van dé kho khén nay bing cach xay dung cac bo phat hién tir sy két hop gitta dit liéu khong c6
nhan va mot sd it dit liéu bat thudng dugc gan nhin. Tuy nhién, nhiing perdng phap nay thiéu
rang budc trong giai doan hoc dic trung dé phan tach dif liéu binh thudng va bit thudng. Ma héa
tu dong dua trén k¥ thuét nén (Shrink Autoencoder) ¢6 kha néng phéan tach cac 16p dur liéu nay
bing cach nén dit liéu binh thudng vé xung quanh géc toa do, va danh phan khong gian con lai
cho bét thu0ng c6 thé xuat hién trong tuong lai. LAy cdm hiing tit Shrink Autoencoder, muc tiéu
nghlen clfu ndy gidi thiéu Shrink iFWAD (goi 12 SFWAD), nhiing mot bo diéu chinh gitip nén dit
liéu vao mo hinh 1FWAD Thanh phan shrink gitip bd ma héa dic trung ctia SFWAD hoc cach phat
dit liéu binh thudng gan gla tri khong, dong thoi kéo cac dif lidu bat thu’Ong cua IoT ra xa khoi
g1a tri khong. Qua trinh nay glup thanh phan sinh diém bat thucng ctia sSFWAD nhén dang hiéu
qua cdc du liéu bat thlIdng ctia IoT. Phuong phap dé xuét nay dudc danh gia so véi cac ky thuat
giam sat yéu hang dau va cac phuong phap phat hién bét thUOng thong thudng khéc st dung tap
dit liéu N-BaloT. Két qua thuc nghlem cho thiy phuong phép nay thudng cho két qué tot hon cdc
phuong phap hoc giam sat yéu gan day ciing nhu cdc phuong phép thong thIIdng theo hiéu suit
phat hién bit thudng mang IGT. Trong phat hién bét thudng chua biét trudc/mdi, ti 1& phat hién sai
ctia SFWAD (0.008) thp hon dang ké so véi cac phuong phap iFWAD (0.026) va ROSAS (0.015).

Tir khoa

Gidm sit yéu, biéu dién 4n, phat hién bat thuong IoT, phat hién IoT botnet.
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