Nghiên cứu sự phân hủy norfloxacin bởi quá trình ôxy hóa tiên tiến sử dụng UV/TiO,/H,O, trong thiết bị phản ứng loại ống

Phan Quí Trà¹, Nguyễn Thành Đồng², Phạm Tuấn Linh², Đặng Thị Lan Hương², Nguyễn Viết Hoàng², Nguyễn Thị Thu Trang^{2*}

> ¹Trường Đại học Bách khoa, Đại học Đà Nẵng ²Viện Công nghệ Môi trường, Viện Hàn lâm KH&CN Việt Nam

Ngày nhận bài 25/2/2022; ngày chuyển phản biện 2/3/2022; ngày nhận phản biện 22/3/2022; ngày chấp nhận đăng 25/3/2022

<u>Tóm tắt:</u>

Norfloxacin (NFX) thường được tìm thấy trong nước thải sinh hoạt, nhà máy xử lý nước thải, nước thải bệnh viện và nước mặt. Điều này có thể gây ra sự mất cân bằng sinh thái. Hơn nữa, các phương pháp xử lý sinh học thông thường (kể cả công nghệ màng lọc MBR) không khả thi để loại bỏ NFX. Trong nghiên cứu này, sự phân hủy NFX bởi quá trình ôxy hóa tiên tiến (AOPs) sử dụng các tác nhân UV/TiO₂ và H₂O₂ trong thiết bị phản ứng loại ống ở quy mô phòng thí nghiệm đã được thực hiện. Các phản ứng phân hủy NFX có thể được biểu thị bởi mô hình động học Langmuir - Hinshelwood. Ảnh hưởng của các yếu tố: nồng độ TiO₂ và H₂O₂, mật độ chiếu xạ UV và chế độ thủy động (tức chuẩn số Reynolds - Re) đến hằng số tốc độ phản ứng biểu kiến (k_{app}) đã được dánh giá. Kết quả cho thấy, quá trình AOPs sử dụng tác nhân kết hợp UV/TiO₂/H₂O₂ ở các điều kiện phản ứng: nồng độ TiO₂ và H₂O₂ tương ứng là 0,2 g/l và 0,0492 mol/l; mật độ chiếu xạ UV là 225 W/m² và chuẩn số Re là 6700 cho hằng số tốc độ phản ứng phân hủy NFX đạt 0,052 phút⁻¹.

<u>Từ khóa:</u> động học, ôxy hóa tiên tiến, quang xúc tác, thiết bị phản ứng loại ống.

<u>Chỉ số phân loại:</u> 2.4

Study of norfloxacin degradation by advanced oxidation process using UV/TiO₂/H₂O₂ in an annular reactor

Qui Tra Phan¹, Thanh Dong Nguyen², Tuan Linh Pham², Thi Lan Huong Dang², Viet Hoang Nguyen^{2,*} Thi Thu Trang Nguyen^{2,*}

¹University of Technology and Education, The University of Danang ²Institute of Environmental Technology, Vietnam Academy of Science and Technology Received 25 February 2022; accepted 25 March 2022

<u>Abstract:</u>

Norfloxacin (NFX) residual was frequently found in domestic wastewater, sewage treatment plants, hospital wastewater, and surface water like lakes and rivers. This threatens the ecological balance of the environment. Moreover, normal biological treatment methods (including membrane bioreactor - MBR) are not feasible for the removal of NFX. In this study, the degradation of NFX through advanced oxidation processes (AOPs) utilising UV/TiO, and H,O, as reagents in a laboratory-scale tubular reactor system was conducted. The degradation reactions of NFX could be represented by the Langmuir-Hinshelwood kinetic model. The influence of factors, including TiO, and H₂O₂ concentrations, UV irradiation intensity, and hydrodynamic conditions (specifically, Reynolds number), on the apparent reaction rate constant (k_{ann}) was evaluated. The results demonstrated that the advanced oxidation process employing the combined reagents of UV/ TiO₂/H₂O₂ under the following reaction conditions: TiO₂ and H₂O₂ concentrations of 0.2 g/l and 0.0492 mol/l, UV irradiation intensity of 225 W/m², and Reynolds number of 6700, achieved an apparent degradation reaction rate constant for NFX of 0.052 min⁻¹.

<u>Keywords:</u> advanced oxidation process, annular reactor, kinetic, photocatalytic.

Classification number: 2.4

^{*}Tác giả liên hệ: Email: thutrangnguyen1210@gmail.com

Đăt vấn đề

Gần đây, một lượng đáng kể các hợp chất ô nhiễm hữu cơ được phát hiện trong nước thải sinh hoạt và các ngành công nghiệp dệt nhuộm, dược phẩm [1]. Những hợp chất này khó có thể xử lý triệt để bằng các phương pháp hóa học và sinh học thông thường, dẫn đến tồn dư của các hợp chất này trong môi trường nước gây mất cân bằng sinh thái và đe dọa sức khỏe con người [2]. Vì vậy, việc xử lý dư lượng các hợp chất ô nhiễm hữu cơ là hết sức cần thiết để đảm bảo sự phát triển bền vững và bảo vệ môi trường.

Vấn đề xử lý dư lượng hợp chất ô nhiễm hữu cơ đã thúc đẩy các nghiên cứu liên quan đến các quá trình AOPs. Cơ chế phân hủy các hợp chất hữu cơ bằng quá trình AOPs dựa trên sự hình thành của các gốc hydroxyl, sulfat hoặc clo có khả năng phân hủy không chọn lọc các hợp chất ô nhiễm hữu cơ [3]. Một số quá trình AOPs trên cơ sở UV/TiO₂ và H_2O_2 trong các nghiên cứu quy mô phòng thí nghiệm đã nhận được sự quan tâm đáng kể vì hiệu quả xử lý cao, thân thiện với môi trường [4].

NFX là một loại kháng sinh tiêu biểu thuộc nhóm Fluoroquinolone, được sử dụng để điều trị một số bệnh nhiễm trùng đường tiết niệu, nhiễm trùng bàng quang. NFX đã được phát hiện trong nước thải của các ngành công nghiệp dược phẩm, bệnh viện và ngành chăn nuôi [5]. Mặc dù, sự phân hủy NFX đã được ghi nhận bởi các quá trình AOPs sử dụng UV/TiO₂, Fenton và UV/H₂O₂ [6, 7]. Tuy nhiên, tác dụng kết hợp UV/TiO₂/H₂O₂ để phân hủy NFX chưa được công bố. Mặt khác, hầu hết các nghiên cứu phân hủy các hợp chất hữu cơ bền bằng quá trình AOPs trước đây đều được thực hiện trong thiết bị khuấy đơn giản [6, 7]. Điều này rất cần thiết trong giai đoạn đầu của nghiên cứu quy mô phòng thí nghiệm, nhưng việc thiết kế và triển khai ở quy mô công nghiệp yêu cầu dữ liệu cụ thể hơn về các đặc điểm kích thước của thiết bị phản ứng, chế độ thủy động (dòng chảy tầng hoặc dòng chảy rối, tức là chuẩn số Re) và mật độ chiếu xạ tia cực tím. Bên cạnh đó, trong các cấu hình thiết bị phản ứng quang hóa, thiết bị phản ứng dạng ống ngày càng được sử dụng rộng rãi bởi những ưu điểm tiềm năng của chúng [8-10].

Do đó, nghiên cứu này sẽ khảo sát sự phân hủy NFX bởi quá trình AOPs trên cơ sở UV/TiO₂ và H_2O_2 trong thiết bị phản ứng loại ống. Ảnh hưởng của các thông số vận hành (nồng độ TiO₂ và H_2O_2 , cường độ tia cực tím, chế độ thủy động) đến k_{app} của quá trình UV/TiO₂ và UV/ H_2O_2 đơn lẻ đã được nghiên cứu. Cuối cùng, tác động hiệp đồng của UV/TiO₂/ H_2O_2 đối với hiệu quả phân hủy NFX đã được đánh giá và so sánh với các quá trình UV/TiO₂ và UV/ H_2O_2 .

Vật liệu và phương pháp nghiên cứu

Vật liệu

NFX độ tinh khiết 99,5%, Merck, Đức (CAS 70458-96-7); H₂O₂ nồng độ 30%, Xilong, Trung Quốc (CAS 7722-84-1); TiO₂-P25, Jepsen and Jensen, Singapore (CAS 13463-67-7).

Sơ đồ hệ thống thí nghiệm

Sơ đồ hệ thống thí nghiệm phân hủy NFX bởi quá trình AOPs sử dụng UV/TiO, và H₂O, được thể hiện ở hình 1.

Hình 1. Sơ đồ hệ thống thí nghiệm.

Thiết bị phản ứng loại ống hình khuyên (RUV) được làm bằng thép không gỉ (SUS316), có kích thước 0,5x0,1x0,05m (chiều cao x đường kính trong x chiều dày thiết bị). Bên trong thiết bị phản ứng có chứa một ống thạch anh (đường kính ngoài 0,04 m). Nguồn chiếu xạ là đèn UV thủy ngân áp suất thấp (UXPM LAB-400) có công suất cực đại 400 W, đặt bên trong ống thạch anh. Hệ thống UXPM LAB có khả năng theo dõi và điều chỉnh mật độ chiếu dựa trên bộ điều khiển (C1) và cảm biến mật độ chiếu UV (I1). Giá trị của cường độ UV ban đầu khi không có hỗn hợp huyền phù trong bể phản ứng (I₀) tương ứng với các mức điều khiển của đèn đã được khảo sát và ghi lại ở bảng 1.

Bảng	1. Mật	độ	chiếu	xạ	UV	ban	đầu	(I ₀)	tương	ứng	với	các
mức đ	liều kh	niển	đèn U	V.				•				

Các mức điều khiển của đèn UV	Mật độ chiếu xạ UV ban đầu (I ₀ , W/m²)
Mức I	75
Mức II	150
Mức III	225
Mức IV	300
Mức V	400

Quy trình thí nghiệm

Đối với mỗi thí nghiệm phân huỷ NFX, lượng chất xúc tác quang TiO₂ cần thiết được phân tán trong dung dịch NFX (10 mg/l) bằng sóng siêu âm trong 15 phút. Sau đó, lượng H_2O_2 30% cần thiết được thêm vào để tạo thành hỗn hợp phản ứng (thể tích tổng là 8 l).

Ban đầu, hỗn hợp được bơm tuần hoàn trong hệ thống ở điều kiện không có bức xạ trong 30 phút để đạt trạng thái cân bằng hấp phụ. Sau đó, đèn UV được bật để thực hiện quá trình phân hủy các hợp chất hữu cơ gây ô nhiễm. Tất cả các thí nghiệm được thực hiện ở $30\pm1^{\circ}$ C. Tốc độ dòng chảy được điều chỉnh bởi van V2 và được giám sát bởi lưu lượng kế FI602. Cường độ UV (I_a, W/m²) được thay đồi bằng bộ điều khiển UV-EL (C1).

Trong quá trình thí nghiệm, một lượng thể tích bằng nhau của hỗn hợp phản ứng được lấy ra trong khoảng thời gian nhất định và lọc qua màng có kích thước lỗ $0,2 \,\mu$ m để loại bỏ các hạt xúc tác TiO₂ trước khi tiến hành xác định nồng độ NFX bằng phương pháp đo quang UV-VIS ở bước sóng 273 nm [7]. Thể tích mỗi lần lấy mẫu là 5 ml, tổng lượng mẫu lấy ra không vượt quá 5% tổng lượng dung dịch đưa vào thí nghiệm.

Các công thức tính toán

Re trong thiết bị phản ứng hình khuyên được tính theo công thức sau:

$$Re = \frac{\overline{u}\rho d_e}{\mu}$$
(1)

trong đó: μ là độ nhớt của hỗn hợp (Ns/m²) được xác định bằng thiết bị đo độ nhớt Elcometer R2300; ρ là khối lượng riêng của hỗn hợp phản ứng (kg/m³) được xác định bởi tỷ trọng kế; \overline{u} là vận tốc của chất lưu đi trong thiết bị phản ứng (m/s) và có thể được xác định thông qua lưu lượng dòng Q (m³/s) và tiết diện ngang của thiết bị phản ứng loại ống hình khuyên (F, m²); d_c là đường kính tương đương của thiết bị phản ứng hình khuyên (m).

Độ chuyển hóa (hiệu suất xử lý NFX) được tính theo công thức sau:

$$H^{t} = \frac{C_{0} - C_{\tau}}{C_{0}} \times 100\%$$
(2)

trong đó: C_0 và C_τ lần lượt là nồng độ CIP ban đầu và tại thời điểm t của phản ứng (kể từ khi bắt đầu chiếu xạ).

Động học phản ứng được xác định theo công thức sau:

$$-r = \frac{dC}{dt} = \frac{kK_{ad}C}{1 + K_{ad}C}$$
(3)

65(6) 6.2023

Khi nồng độ chất hữu cơ ban đầu thấp, $K_{ad}C << 1$, phương trình (3) có thể viết như sau:

$$-r = \frac{dC}{dt} \cong kK_{ad}C = k_{app}C$$
(4)

Lấy tích phân phương trình (4) ta được:

$$\ln\left(\frac{C_0}{C}\right) = k_{app} x t$$
(5)

trong đó: r là tốc độ phản ứng được tính bằng sự thay đổi của nồng độ trong khoảng thời gian nhất định (dC/dt); k là hằng số tốc độ phản ứng; K_{ad} là hằng số cân bằng hấp phụ; k_{app} là hằng số tốc độ phản ứng biểu kiến (phút⁻¹); C₀ là nồng độ chất hữu cơ (NFX) ban đầu và C là nồng độ NFX tại thời điểm t (phút). k_{app} của phản ứng phân hủy NFX (k_{app}) có thể được xác định từ mỗi quan hệ trong phương trình (5).

Kết quả và bàn luận

Kiếm tra động học phản ứng phân hủy NFX bởi AOPs sử dụng UV/TiO, và H,O,

Mối quan hệ giữa $\ln(C_0/C)$ và thời gian (t) của một số thí nghiệm phân hủy NFX bằng quá trình AOPs sử dụng UV/TiO₂ và H₂O₂ trong các điều kiện khác nhau được thể hiện ở hình 2. Các thông số vận hành chính để kiểm tra động học phản ứng phân huỷ NFX được trình bày ở bảng 2.

Hình 2. Động học phản ứng phân hủy NFX bởi AOPs sử dụng UV/TiO, và H_2O_2 .

Bảng 2. Một số thí nghiệm điển hình để kiểm tra động học phản ứng phân hủy NFX.

Mã thí nghiệm	Các thông số vận hành chính
Exp. 1	$[TiO_2]=0.2 \text{ g/l}, I_0=225 \text{ W/m}^2, \text{Re}=6500$
Exp. 2	$[H_2O_2]=0,12 \text{ mol/l}, I_0=225 \text{ W/m}^2, \text{Re}=6500$
Exp. 3	[TiO ₂]=0,2 g/l, [H ₂ O ₂]=0,06 mol/l, I ₀ =225 W/m ² , Re=6500

Ghi chú: $C_0=10$ mg/l, t=30±1°C, không điều chỉnh pH.

Kết quả bảng 2 cho thấy, các phản ứng phân huỷ của NFX (nồng độ ban đầu $C_0=10 \text{ mg/l}$) có thể được mô tả bằng phương trình động học giả bậc nhất Langmuir-Hinshelwood. Hệ số tương quan giữa mô hình và giá trị thực nghiệm ở mức chấp nhận được (R²>0,98). X. Chen và J. Wang (2020) [11] đã thực hiện các thí nghiệm về xử lý NFX bằng cách chiếu xạ ion hóa, kết quả cho thấy với nồng độ dung dịch NFX ban đầu là 5-40 mg/l, sự phân hủy của NFX đều tuân theo động học giả bậc nhất. Đây là cơ sở chắc chắn để đánh giá ảnh hưởng của các thông số vận hành đến k_{app} của việc phân hủy NFX bằng quá trình AOPs sử dụng UV/TiO₂ và H₂O₂ Trong một nghiên cứu khác, G. Shankaraiah và cs (2016) [6] đã xác nhận rằng, nếu nồng độ NFX ban đầu vượt quá 150 mg/l thì hiệu quả xử lý sẽ bị suy giảm so với khi tiến hành ở các nồng độ NFX thấp hơn. N.T.T Trang và cs (2020) [7] cũng tiến hành xử lý NFX ở nồng độ đầu là 10 mg/l bởi quá trình UV/TiO₂-SBA 15 cho thấy hiệu quả phân hủy đạt trên 90%.

Phân hủy NFX bởi quá trình UV/TiO, đơn lẻ

Ånh hưởng của nồng độ TiO₂: Đối với bất kỳ ứng dụng quang xúc tác nào, nồng độ xúc tác cần được tối ưu hóa để tiết kiệm chi phí hóa chất và đảm bảo phản ứng đạt hiệu quả cao. Trong nghiên cứu này, ảnh hưởng của nồng độ TiO₂ đến k_{app} phản ứng phân hủy NFX bởi quá trình UV/TiO₂ đã được khảo sát.

Kết quả hình 3 cho thấy, giá trị k_{app} tăng từ 0,029 lên 0,0443 phút⁻¹ khi nồng độ TiO₂ tăng từ 0,1 lên 0,3 g/l. Điều này được giải thích là do sự gia tăng diện tích bề mặt tiếp xúc pha giữa các hạt TiO₂ và NFX. Trong phạm vi nồng độ này, các hạt TiO₂ vẫn nhận được bức xạ UV cần thiết để duy trì phản ứng quang xúc tác.

Hình 3. Ảnh hưởng của nồng độ TiO₂ đến hằng số tốc độ phản ứng phân hủy NFX (I₂=225 W/m², Re=6500).

Tuy nhiên, k_{app} của phản ứng phân hủy NFX giảm xuống còn 0,025 phút⁻¹ khi nồng độ TiO₂ tăng lên 0,4 g/l. Bởi vì, nồng độ xúc tác ở mức cao sẽ cản trở tia UV truyền qua huyền phù. Các hạt xúc tác TiO₂ ở xa nguồn chiếu xạ sẽ không nhận được năng lượng photon, hạn chế sự hình thành các gốc OH[•], dẫn đến giảm tốc độ phản ứng. Do đó, nồng độ TiO₂ 0,3 g/l được lựa chọn cho các thí nghiệm tiếp theo.

Ảnh hưởng của mật độ chiếu xạ UV: Một thông số quan trọng khác đối với ứng dụng quang xúc tác để phân hủy các hợp chất hữu cơ bền là mật độ chiếu xạ tia cực tím. Ban đầu, việc tăng mật độ chiếu xạ ảnh hưởng tích cực đến việc loại bỏ NFX. Kết quả đánh giá ảnh hưởng của mật độ chiếu xạ UV được thể hiện ở hình 4. Giá trị k_{app} phản ứng tăng từ 0,0184 lên 0,0443 phút⁻¹ khi mật độ chiếu tăng tương ứng từ 75 lên 225 W/m². Tuy nhiên, khi tiếp tục tăng giá trị mật độ chiếu từ 225 lên đến 300 W/m², k_{app} chỉ tăng nhẹ từ 0,0443 lên đến 0,0453 phút⁻¹ (tăng 2,26%). Tại mật độ chiếu 400 W/m², k_{app} phân ứng phân hủy NFX có xu hướng giảm nhẹ xuống còn 0,0402 phút⁻¹.

Hình 4. Ảnh hưởng của mật độ chiếu ban đầu (I_0) đến k_{app} phản ứng phân hủy NFX (nồng độ TiO, 0,3 g/l, Re=6500).

Điều này là do khi mật độ chiếu xạ UV ở mức độ rất cao, hiện tượng tái tổ hợp các cặp electron - lỗ trống sẽ chiếm ưu thế [12]. Do đó, tốc độ sinh ra gốc tự do OH bị giảm xuống, hạn chế sự phân hủy NFX bởi quá trình AOPs sử dụng UV/TiO₂.

Bên cạnh đó, việc lựa chọn mật độ chiếu phù hợp cho phản ứng phân hủy các hợp chất ô nhiễm hữu cơ cần cân nhắc đến năng lượng điện tiêu thụ. Tại mật độ chiếu cao, năng lượng điện tiêu thụ lớn và phần lớn bức xạ UV sẽ chuyển thành năng lượng nhiệt. Do đó, mật độ chiếu xạ $I_0=225$ W/m² sẽ được lựa chọn để tiến hành các nghiên cứu tiếp theo.

Ânh hưởng của chế độ thủy động: Hình 5 biếu diễn mối quan hệ giữa chế độ thủy động (tức chuẩn số Re) và k_{app} của quá trình phân hủy NFX. Giá trị k_{app} là 0,019 phút⁻¹ đã được ghi nhận tương ứng với chuẩn số Re là 1700 và tăng lên 0,0443 phút⁻¹ tại chuẩn số Re là 6500. Các nghiên cứu của S. Corbel và cs (2014) [10], J. Kumar và A. Bansa (2012) [13] cho thấy, sự gia tăng chuẩn số Re là ở mức hợp lý sẽ thúc đẩy tốc độ khuếch tán của chất hữu cơ lên bề mặt của các hạt xúc tác, do đó tốc độ phản ứng phân hủy các hợp chất ô nhiễm hữu cơ được cải thiện. Sự gia tăng chuẩn số Re dẫn đến tăng tốc độ phân hủy các hợp chất hữu cơ cũng được giải thích là do khi hệ được vận hành trong điều kiện hỗn loạn (Re>2300), các phân tử chuyển động hỗn loạn theo các hướng khác nhau. Điều này tạo ra sự phân bố đều các gốc OH• bên trong thiết bị phản ứng, do đó làm tăng tốc độ phản ứng.

Ảnh hưởng bất lợi của việc tăng chuẩn số Re đến k_{app} cũng được đề cập, việc tăng tốc độ dòng sẽ làm giảm thời gian lưu của hỗn hợp huyền phù TiO₂ và dung dịch chất phản ứng trong thiết bị phản ứng. Do thiết bị phản ứng dạng ống hình khuyên nên khi thời gian lưu không đủ dài, các hạt xúc tác TiO₂ không

nhận được bức xạ UV để tạo ra các gốc tự do OH, vì vậy tốc độ phản ứng sẽ giảm; xu hướng giảm k_{app} của phản ứng phân huỷ NFX từ 0,1445 xuống 0,0829 (phút⁻¹) khi chuẩn số Re tăng từ 6500 lên 9700 (hình 5).

Phân hủy NFX bởi quá trình UV/H₂O₂ đơn lẻ

Trong quá trình phân hủy các hợp chất ô nhiễm hữu cơ bởi quá trình UV/H₂O₂, nồng độ H₂O₂ đóng vai trò quan trọng nhất, liên quan đến tốc độ phản ứng và chi phí vận hành. Ban đầu, tăng liều lượng H₂O₂ sẽ làm tăng tốc độ phản ứng. Tuy nhiên, khi H₂O₂ dư sẽ tạo thành gốc HO₂, gốc này có thế ôxy hóa yếu hơn gốc OH, do đó làm giảm tốc độ phản ứng [13].

Bảng 3. Ảnh hưởng của nồng độ H_2O_2 đến k_{app} của quá trình phân hủy NFX sử dụng UV/ H_2O_2 .

Nồng độ H_2O_2 (mol/l)	k _{app} (phúť¹)
0,062	0,028
0,123	0,051
0,246	0,029
0,369	0,00059

Ghi chú: C₀=10 mg/l, I₀=225 W/m², Re=6500.

Kết quả ở bảng 3 cho thấy, khi nồng độ của H_2O_2 tăng từ 0,062 đến 0,123 mol/l, k_{app} tăng tương ứng từ 0,028 đến 0,051 phút⁻¹ và giảm xuống còn 0,029 phút⁻¹ khi tiếp tục tăng nồng độ của H_2O_2 lên 0,246 mol/l. Tuy nhiên cần lưu ý rằng, H_2O_2 có giá thành cao và mức tiêu thụ tỷ lệ thuận với lượng nước thải cần xử lý. Trong khi đó, mặc dù quy trình UV/TiO₂ có tốc độ phản ứng thấp hơn và đòi hỏi chi phí hóa chất ban đấu cao hơn, nhưng TiO₂ có thể được thu hồi và tái sử dụng nhiều lần. Do đó, quá trình chọn UV/TiO₂, UV/ H_2O_2 hoặc sự kết hợp của UV/TiO₂ và H_2O_2 cần được xem xét cụ thể trên cả khía cạnh kinh tế và kỹ thuật. Nghiên cứu này bước đầu xem xét ảnh hưởng đồng thời của UV/TiO₂, và H_2O_2 dễ xử lý kháng sinh NFX.

Phân hủy NFX bởi quá trình UV/TiO,/H,O,

Trong nghiên cứu này, một số kết hợp điển hình của UV/TiO_2 và H_2O_2 để phân hủy NFX được trình bày ở bảng 4.

Bảng 4. Sự kết hợp UV/TiO₂/H₂O₂ để xử lý NFX.

Exp.	EC1	EC2	EC3	EC4	EC5
TiO ₂ (g/l)	0,4	0,3	0,2	0,1	0,05
H ₂ O ₂ (mol/l)	0,0123	0,0246	0,0490	0,0730	0,0984
k _{app} (phút¹)	0,0312	0,0492	0,0520	0,0395	0,034
R ²	0,9987	0,98	0,998	0,995	0,992

Ghi chú: Re=6500, I₀=225 W/m², không điều chỉnh pH.

Đầu tiên có thể thấy rằng, sự kết hợp của UV/TiO₂/H₂O₂ để phân hủy NFX cho thấy hiệu quả so với quy trình UV (ở cùng cường độ UV) và UV/TiO₂ đơn lẻ (với cùng nồng độ TiO₂). Trong trường hợp phân hủy NFX, với cùng nồng độ TiO₂ 0,1 g/l, k_{ann} của quá trình UV/H₂O₂ là 0,029 phút⁻¹. Trong khi đó, với quá

trình UV/TiO₂/H₂O₂ (nồng độ của H₂O₂ là 0,0730 mol/l) thì k_{app} là 0,0395 phút⁻¹. Ngoài ra, ở cùng mật độ chiếu I₀=225 W/m², k_{app} của phản ứng phân huỷ NFX bằng tia UV là 0,0025 phút⁻¹, thấp hơn 20,8 lần so với quá trình UV/TiO₂/H₂O₂ (hình 6).

Hình 6. Động học quá trình phân hủy NFX bởi AOPs sử dụng UV, UV/TiO₂, UV/H₂O₂ và UV/TiO₂/H₂O₂.

Trong nghiên cứu này, quá trình kết hợp UV/TiO₂/H₂O₂ trong phản ứng phân huỷ NFX thu được k_{app} tương đương với quá trình UV/H₂O₂ (trong điều kiện hoạt động tối ưu), nhưng lượng TiO₂ và H₂O₂ được sử dụng thấp hơn so với các quy trình riêng lẻ. Sự kết hợp của UV/TiO₂/H₂O₂ để xử lý NFX cho phép tiết kiệm 33,3% TiO, và 60% H,O, so với UV/TiO, (tại điều kiện tối ưu) và UV/H₂O₂ (tại điều kiện nồng độ H₂O₂ tối ưu), sau 45 phút xử lý nồng độ NFX giảm xuống còn khoảng 1,3 mg/l, hiệu suất xử lý đạt 87%, k_{app} là 0,0520 phút⁻¹. Khi có mặt đồng thời TiO, và H₂O, thì phức chất TiOOH sẽ được tạo thành và điều này sẽ tăng cường sự hình thành các gốc OH[•], do đó tốc độ phản ứng phân hủy các hợp chất hữu cơ độc hại được cải thiện so với các quá trình UV, UV/TiO, và UV/H₂O, [14, 15]. N.T.T. Trang và cs (2020) [7] đã báo cáo hiệu suất xử lý NFX đạt khoảng 85% sau 45 phút bởi quá trình UV/TiO₂-SBA 15 trong thiết bị khuẩy. G. Shankaraiah và cs (2016) [6] báo cáo hiệu suất xử lý dư lượng NFX trong thiết bị khuẩy lần lượt đạt 50% bởi quá trình chiếu xạ UV-C; 68-70% bởi quá trình UV/H₂O₂; 90% bởi quá trình UV/TiO, sau 210 phút xử lý. Quá trình kết hợp UV/TiO,/H,O, cho phép tiết kiệm cả H₂O₂ và TiO₂ so với các quy trình đơn lẻ mà vẫn đảm bảo tốc độ phản ứng tương đương với quy trình UV/H₂O₂, điều này rất có ý nghĩa về mặt kinh tế và kỹ thuật. Việc tiết kiệm H₂O₂ và TiO₂ trước hết cho phép tiết kiệm chi phí hóa chất, ngoài ra, việc giảm nông độ TiO, cho phép nâng cao hiệu quả sử dụng tia UV và giảm thiểu tác động tiêu cực đến quá trình tách và thu xúc tác bằng màng vi lọc/siêu lọc (MF/UF). Kết quả thu được trong nghiên cứu này là cơ sở cho nghiên cứu tích hợp AOPs sử dụng UV/TiO₂/H₂O₂ và màng vi lọc để xử lý dư lượng các hợp chất ô nhiễm hữu cơ trong nước thải công nghiệp.

Kết luận

Nghiên cứu này đã đánh giá được ảnh hưởng của các thông số vận hành gồm nồng độ TiO₂, liều lượng H₂O₂, mật độ chiếu xạ UV và chế độ thủy lực đến k_{app} của phản ứng phân huỷ NFX. Dưới chế độ vận hành: nồng độ TiO₂ là 0,2 g/l và H₂O₂ là 0,0492 mol/l; mật độ chiếu xạ UV là 225 W/m² và chuẩn số Re

là 6700, k_{app} phản ứng phân hủy NFX là 0,0520 phút⁻¹. Kết quả thu được trong nghiên cứu này là cơ sở cho nghiên cứu tích hợp AOPs sử dụng UV/TiO₂/H₂O₂ và vi lọc/siêu lọc để xử lý nước thải ở quy mô công nghiệp.

LỜI CẨM ƠN

Tập thể tác giả trân trọng cảm ơn sự hỗ trợ kinh phí của Bộ Khoa học và Công nghệ thông qua đề tài Nghị định thư giữa Việt Nam - CHLB Đức, mã số NĐT.59.GER/19.

TÀI LIỆU THAM KHẢO

[1] M.H. Fontela, M.T. Galceran, F. Ventura (2010), "Fast liquid chromatography-quadrupole-linear ion trap mass spectrometry for the analysis of pharmaceuticals and hormones in water resources" *Journal of Chromatography A*, **1217(25)**, pp.4212-4222.

[2] R.C. Maclean, A.S. Millan (2019), "The evolution of antibiotic resistance clinically relevant evolution studies are needed to help fight the spread of antibiotic resistance", *Science*, **365(6458)**, pp.1082-1083.

[3] N. Mahamuni, Y. Adewuyi (2010), "Advanced oxidation processes (AOPs) involving ultrasound for wastewater treatment: A review with emphasis on cost estimation", *Ultrasonics Sonochemistry*, **17**(6), pp.990-1003.

[4] E. Bizani, K. Fytianos, I. Poulios, et al. (2006), "Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide", *Journal of Hazardous Materials*, **136(1)**, pp.85-94.

[5] D.H. Anh, P.N. Ha, N.H. Tung, et al. (2008), "Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam", *Chemosphere*, **72(6)**, pp.968-973.

[6] G. Shankaraiah, S. Poodari, S. Vidyavathic (2016), "Degradation of antibiotic norfloxacin in aqueous solution using advanced oxidation processes (AOPs) - A comparative study", *Desalination and Water Treatment*, **57**, pp.27804-27815.

[7] N.T.T Trang, T.Q. Vinh, H.V Giang, et al. (2020), "Removal of Norfloxacin by TiO₂-SBA 15 photocatalyst", *Vietnam Journal of Science and Technology*, **58(3A)**, pp.13-19, DOI: 10.15625/2525-2518/58/3A/14229.

[8] O. Autin, J. Hart, P. Jarvis, et al. (2013), "Comparison of UV/TiO₂ and UV/H₂O₂ processes in an annular photoreactor for removal of micropollutants: Influence of water parameters on metaldehyde removal, quantum yields and energy consumption", *Applied Catalysis B: Environmental*, **138-139**, pp.268-275.

[9] P.D. Chinh, P.M. Cuong, L.P Thanh, et al. (2021), "Optimization of opeation parameters for methylene blue degradation by UV/TiO₂/H₂O₂ process in an annular reactor", *Vietnam Journal of Catalysis and Adsorption*, 10(1), pp.40-47.

[10] S. Corbel, N. Becheikh, T.R. Carmes, et al. (2014), "Mass transfer measurements and modeling in a microchannel photocatalytic reactor", *Chemical Engineering Research and Design*, **92(4)**, pp.657-662.

[11] X. Chen, J. Wang (2020), "Degradation of norfloxacin in aqueous solution by ionizing irradiation: Kinetics, pathway and biological toxicity", *Chemical Engineering Journal*, **395(1)**, DOI: 10.1016/j.cej.2020.125095.

[12] J.M. Hermann (2005), "Heterogeneous photocatalysis: State of the art and present applications in honor of Pr. R.L. Burwell Jr. (1912-2003) - Former Head of Ipatieff Laboratories, Northwestern University, Evanston (III)", *Topics in Catalysi*, **34**, pp.49-65.

[13] J. Kumar, A. Bansa (2012), "CFD modeling of hydrodynamics and mass transfer of Rhodamine B in annular reactor", *Heat Mass Transfer*, 48, pp.2069-2077.

[14] Q. Zhang, C. Li, T. Li (2013), "Rapid photocatalytic decolorization of methylene blue using high photon flux UV/TiO₂/H₂O₂ process", *Chemical Engineering Journal*, **217**, pp.407-413.

[15] T. Liu, X. Li, X. Yuan, et al. (2016), "Enhanced visible-light photocatalytic activity of a TiO₂ hydrosol assisted by H₂O₂: Surface complexation and kinetic modeling", *Journal of Molecular Catalysis A: Chemical*, **414**, pp.122-129.

