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Abstract - In this study, the deflection and stress field of perfect 

and imperfect (with and without porosities) functionally graded 

(FG) cylindrical panels are determined following the first-order 

shear deformation theory (FSDT). The panel rested on the two-

parameter elastic foundation (Pasternak foundation) under 

pressure loads and worked in a hygro-thermal environment. 

Navier’s solution has been used for simply supported cylindrical 

panels to analyze the effects of porosity, geometrical and 

foundation parameters, as well as temperature and humidity on 

deflection and stress field. The validated examples demonstrate 

the reliability of the solution and the self-written Matlab program. 

Numerical investigations show a significant hygro-thermal effect 

on the static response of the FG panel. 

Key words - Cylindrical panel; static analysis; functionally 

graded material; porosity; first-order shear deformation theory. 

1. Introduction 

As a part of advanced materials, functionally graded 

materials (FGMs) have attracted the attention of both 

domestic and international scientists since their first 

appearance in the late 18th century. Due to their superior 

mechanical properties, FGMs are the ideal selection for 

manufacturing high-performance structures. These 

structures had potential applications in adverse 

environmental conditions such as fuel combustion 

chambers, thermal shields for aircraft, plasma-facing 

surfaces in nuclear reactors, and conduits in heat exchange 

equipment [1]. Cylindrical panel components are widely 

used in aircraft fuselages or nose sections of flying objects 

which typically endure high temperatures during operation. 

These structures are inhomogeneous, so it is crucial to 

study their behavior under normal working conditions [2-

4], while behavior in high-temperature environments [5-7] 

poses a significant challenge for scientists. 

During the manufacturing process of FGMs, 

microscopic voids may appear within the material structure, 

especially when using the non-pressure sintering technique 

[8]. The presence of these micro-voids significantly reduces 

the load-bearing capacity of FGMs with porosities (FGMPo) 

[8, 9]. Studies on the mechanical behavior of imperfect FGM 

plates (with porosities) and perfect cylindrical panels in 

thermal environments have been published by several 

authors. However, no publications on the static behavior of 

FGM cylindrical panels, taking into account the 

hygrotherrmal effects, were found in open sources. This is 

an issue that cannot be ignored for structures operating in 

environments with high humidity and simultaneously under 

high-temperature conditions. 

Following the previous results of bending and vibration 

analysis of FGMPo panels [10, 11], this study, based on 

First-Order Shear Deformation Theory (FSDT), the 

deflection and stress fields in FGMPo cylindrical panels 

with even and uneven porosity distributions in 

hygrothermal environment are determined. The 

temperature and moisture fields are assumed to be either 

constant or linearly varying across the panel thickness. The 

Navier solution is employed to provide explicit from of 

displacement and stress fields of simply supported FGMPo 

cylindrical panels. After verifying the solution and a 

handmade Matlab program as well, the impact of porosity, 

temperature, moisture, foundation parameters, and 

geometric dimensions on the static behavior of FGMPo 

cylindrical panels is evaluated through numerical 

investigations. 

2. Theoretical Approach 

2.1. Porous FGMPo Cylindrical Panel 

Consider an FGMPo cylindrical panel (Figure 1), with 

thickness h, length L, and circumferential length a. The 

panel is placed on an elastic foundation with two stiffness 

coefficients: wk  is the Winkler stiffness coefficient; sk  is 

the shear stiffness coefficient. 

 

(a): FGMPo cylindrical panel resting on elastic foundation 

 

(b): Perfect FGM  

 

(c): FGPM-1 
 

(d): FGPM-2 

Figure 1. FGMPo cylindrical panel on an elastic foundation 

and three types of porosity distributions 
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The FGMPo material consists of two constituent phases: 

ceramic and metal; the effective properties effP  are assumed 

to vary smoothly according to a power law (P-FGM) along 

the panel thickness. The top surface is ceramic-rich, while 

the bottom surface is metal-rich. 

In terms of the imperfect FGMPo panel, pores develop 

along the shell thickness due to manufacturing defects. Two 

types of porosity distributions are considered: even porosity 

distribution (FGMPo - 1) and uneven porosity distribution 

(FGMPo - 2), which are concentrated on the mid-surface of 

the shell and decrease linearly to zero at the top and bottom 

surfaces. Especially, a perfect FGM material (without 

microvoids) can also be obtained. The material properties of 

FGMPo include Young’s modulus E, Poisson’s ratio ν, 

thermal expansion coefficient α and moisture concentration 

expansion coefficient β as follows [12, 13]: 
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2.2. Static Equilibrium Equations 

According to FSDT theory, the displacement field of 

the cylindrical panel can be expressed as [14]: 
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where: 0 0 0, ,u v w  are the displacements on the mid-surface 

along the axis x, y, z; ,x y   are the rotation angles of the mid-

surface normal around the y - axis and x - axis, respectively. 

The strain field can be expressed in the form: 
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The stress - strain relation is written as follows: 
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0 0,T C  are the reference temperature and moisture 

concentration, respectively. 

The stress resultants of the panel are defined as follows: 
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where ck  is the shear correction factor. 

By substituting relation (5) into (6), the stress resultants 

can be rewritten in the following form: 

0
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Static equilibrium equations of cylindrical panel resting 

on elastic foundation, under transverse load q can be given 

in the form [14]: 

, , , ,0; 0;x x xy y xy x y yN N N N+ = + =  

, , 0;
y

x x y y e
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R
+ − − + =  
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(8) 
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The Pasternak’s substrate reaction ef  is defined [15, 16]:  

2
0 0e w sf k w k w= − +   (9) 

Substituting Eq. (7) into (8), equilibrium equations in 

terms of the displacement components are obtained as 

follows: 
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2.3. Navier solution 

For the simply supported (SS) cylindrical panel, the 

boundary condition expressions are as follows: 

At edge x = 0 and x = L:

0 0 0;y x xv w N M= = = = =  

At edge y = 0 and y = a: 

0 0 0x y yu w N M= = = = =  

(11) 

Based on Navier’s technique the expansions of 

displacements are assumed to be satisfied the SS boundary 

conditions: 

( ) ( )

( ) ( )

0

1 1

0

1 1

0

1 1

, , cos sin ;

, , sin cos ;

sin sin

x mn mn

m n

y mn mn

m n

mn

m n

u U X rx sy

v V Y rx sy

w W rx sy





 

= =

 

= =

 

= =

=

=

=







 (12) 

where: m, n = 1, 2, 3,....; , , , ,mn mn mn mn mnU V W X Y  are 

unknown coefficients; , .
m n

r s
L a

 
= =   
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expanded in double-Fourier series as:  

1 1

ˆˆ

ˆˆ sin sin

ˆˆ

ˆˆ

mn

TT
mn

CC
mn

m n TT
mn

CC
mn

qq

NN

N rx syN

MM

MM

 

= =

  
  
  

   
=   

   
   
   
   

   (13) 

The transverse load and hygro-thermal force 

coefficients are given below: 
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Substituting Eqs. (12) - (13) into (10) to get the 

following algebraic ,m n :  
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where stiffness matrix  K  is symmetric; the remaining 

non-zero coefficients include: 
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3. Numerical Studies 

Based on proposed Navier solution, a Matlab code is 

written to analyze numerical studies with the shear 

correction factor as ck  = 5/6. FGMPo cylindrical panel 

(Al/Al2O3) has the following mechanical properties [17]: 

• Al (aluminum): mE = 70 GPa, m = 23×10-6 (1/oC), 
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m = 0.44, m  = 0.3. 

• Al2O3 (alumina): cE  = 380 GPa, c  = 7×10-6 (1/oC), 

c  = 0.001, c  = 0.3. 

The non-dimensional parameters are defined as 

follows [18]: 
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There are two cases of studies obtained to confirm the 

solution reliability: (i) Verification of the deflection of the 

FGM cylindrical panel under mechanical load; (ii) 

Verification of the deflection of the FGM plate subjected 

to mechanical-thermal-moisture loads. 

Table 1 presents non-dimensional deflection 

0

1
,

2 2

a b
w w

h

 
=   

 
 of FGMPo cylindrical panel (Al/ZrO2) 

under uniform tranverse load: q = 106 Pa, h = 0.01 m,  

L = a = 0.2 m. The results are compared to solutions given 

by Sander and Zhao et al. [7].  

Table 1. Non-dimensional deflection w  FGMPo cylindrical 

panel wih various p  

p Zhao and cs. [7] Present Differences (%) 

0 0.04267 0.04264 0.07 

0.5 0.05425 0.05421 0.07 

1 0.06072 0.06067 0.08 

2 0.06658 0.06652 0.09 

5 0.07235 0.07229 0.08 

Table 2. Non-dimensional deflection ŵ  of FGM plate with 

various foundation coefficients and geometrical parameter a/h  

Sources a/h = 10 a/h = 20 a/h = 50 

 0 00, 0K J= =  

Zidi et al. [19] 1.79156 0.71642 0.41516 

Present 1.79221 0.71637 0.41514 

Difference(%) 0.036 0.007 0.005 

 0 0100, 0K J= =  

Zidi et al. [19] 1.29862 0.52553 0.30557 

Present 1.29951 0.52554 0.30556 

Difference(%) 0.069 0.002 0.003 

 0 0100, 100K J= =  

Zidi et al. [19] 0.20193 0.08396 0.04920 

Present 0.20221 0.08398 0.04920 

Difference(%) 0.139 0.024 0.000 

Table 2 shows the non-dimensional deflection of 

FGMPo square plate (Ti-6Al-4V/ ZrO2) resting on an 

elastic foundation subjected to a sinusoidally distributed 

mechanical-hygro-thermal loads [19], with a = L, R →∞. 

The non-dimensional parameters are defined as follows: 
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The comparison between maximum non-dimensional 

deflection and Navier solution obtained via FSDT with 

four displacement variables by Zidi et al. [19]. 

Table 1 and Table 2 depict the insignificant difference 

between this study and the precious research, thus, the 

analytical solution and the written Matlab code are reliable. 

Unless otherwise stated, the following numerical 

studies apply for FGMPo (Al/Al2O3), with input 

parameters: material FGMPo - 2, p = 2, ξ = 0.15,  

h = 0.01 m, R/h = 100, L = a = 0.1×R, transverse load  

q = -5×106 Pa, temperature and moisture increase gradually 

ΔT = 50oC, ΔC = 0.5%. 

 
(a) Variation of w* at the cross- section y = a/2 

 

(b) Variation of 
*
x  at the center of cylindrical panel 

Figure 2. Variation of w* and shear stress *
x  of cylindrical 

panel with various temperature and moisture parameters 

Figure 2 shows the influence of temperature and 

moisture parameters on the changes in deflection and stress 

(w*, 
*
x ) of the FGMPo cylindrical panel. The applied load 

includes mechanical load and thermal and moisture factors, 

varying across four cases: (1) ΔT = 0, ΔC = 0; 
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(2) ΔT = 50oC, ΔC = 0.5%; (3) ΔT = 100oC, ΔC = 0.5%; 

(4) ΔT = 50oC, ΔC = 1%. The graph indicates that thermal-

moisture loading significantly affects the bending behavior 

of the cylindrical panel. In particular, the presence of 

thermal-moisture factors increases the maximum 

deflection 
*
maxw by 2.44, 2.78 and 3.55 in cases (1), (2), (3) 

and (4), respectively. Additionally, hygro-thermal factors 

have led to the variation pattern of stress, with the positions 

of extreme stress points differing from those under purely 

mechanical loading. It is necessary to have detailed studies 

for each case to consider their effects.  

Figure 3 illustrates the impact of the elastic foundation 

parameters 0 0,K J  significantly one the dimensionless 

deflection w  of cylindrical panel. Moreover, as the 

stiffness of the elastic foundation 0 0,K J  increases (with 

higher values of the foundation parameters), the deflection 
w  declines: w  decreases almost linearly with an increase 

in 0K , and decreases rapidly in a nonlinear manner with 

an increase in 0 .J  

 
Figure 3. The effect of elastic foundation parameters 0 0,K J  on 

dimensionless deflection w  of cylindrical panel 

Figure 4 shows the impact of material parameters (the 

volume fraction index p, porosity coefficient ξ and porosity 

distribution types) on the dimesionless deflection w  of 

cylindrical panel. It can be observed that there is a clear 

difference when the panel is subjected only to mechanical 

load and when it is subjected to the combination of 

mechanical, thermal, and moisture load.  

To be more specific that in the case of panel suffering 

mechanical load only (as shown in Figure 4a with different 

porosity distribution types and porosity coefficient ξ, when 

p increases (it means that the amount of ceramic falls) the 

deflection of cylindrical panel goes up. The perfect FGM 

panel has the smallest deflection, while imperfect FGM 

panels show larger deflections; for the same porosity 

coefficient ξ, FGPM-2 has a smaller deflection compared to 

FGPM-1. For imperfect FGM panels, as the porosity 

coefficient ξ increases, the stiffness of the panel decreases, 

leading to increased deflection. Besides, for each p, when  

ξ ranges from 0.1 to 0.3, the even porosity distribution has a 

greater increase than the uneven ones. For instance, at  

p = 10, when ξ increases from 0.1 to 0.3 FGMP-2 panel has 

deflection w  grows 10.65%, whereas when FGMP-1 panel 

has deflection w  increases by 99.34%. 

 
(a) ΔT = 0, ΔC = 0 

  
(b) ΔT = 50 oC, ΔC = 0.1% 

Figure 4. Variation w  of cylindrical panel according to  

the volume fraction index p, porosity coefficient ξ and porosity 

distribution 

In the case of panel suffering mechanical, thermal, and 

moisture load (as given in Figure 4b): when p changes, 

deflection w  has complicated variation: initially when p is 

small, w goes up when p has an improvement, when p is 

big enough w reaches the peak. After that, w declines 

slightly while p keeps going up. he FGPM-1 distribution 

exhibits the highest deflection compared to the perfect 

FGM and FGPM-2 (with the same porosity coefficient ξ); 

as ξ increases, the deflection of FGPM-1 also increases. 

FGPM-2 and the perfect FGM panel exhibit different 

behaviors depending on the index p: when p is insignificant 

(p ≤ 2.5), the perfect FGM has the largest deflection, and 

increasing the porosity coefficient ξ of FGPM-2 reduces 

deflection; for large (p ≥ 4.5) the situation reverses, with 

the perfect FGM having the smallest deflection, and 

increasing the porosity coefficient ξ of FGPM-2 results in 

increased deflection. 

Figure 5 depicts the variation of the dimensionless 

deflection of the cylindrical panel based on the aspect 

ratios a/R and R/h. It is observed that increasing the ratios 
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R/h (increasing radius R) or a/R (increasing side length 

aaa) both reduce the deflection. The deflection decreases 

rapidly when the ratios a/R and R/h have small values, and 

decreases more gradually when these ratios have larger 

values. 

 

Figure 5. Variation of dimensionless deflection w  according to 

aspeact ratios a/R, R/h 

4. Conclusion 

This study has established an analytical solution based 

on First-Order Shear Deformation Theory (FSDT), using 

Navier’s solution form to investigate the static behavior of 

the FGMPo cylindrical panel. The panel is placed on a 

Pasternak elastic foundation, has simply supported 

boundary conditions along its perimeter, and is subjected 

to combined mechanical and hygro-thermal loading. 

Numerical investigations reveal the significant influence of 

material parameters, geometric dimensions, and the elastic 

foundation on the deflection and stress field of the panel. 

Overall, hygro-thermal factors have varying levels of 

impact on the static behavior of the cylindrical panel, 

requiring detailed analysis in each specific case. 
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