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Abstract In this paper, some results on random fixed points of quasi-contracUve and asymp­
totically contractive completely random operators are given This is a contmuation of the 
paper of Thang and Anh (Random Oper. Stoch. Equ 21:1-20, 2013). 
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1 Introduction and Preliminaries 

Let (i2, J. IP) be a probability space. X. Y be separable memc spaces and f i? x X ->• T 
be a random operator in the sense that for each fixed x in X, the mapping co i-^ F{u). x) is 
measurable. An X-valued random vanable § is said to be a random fixed point ofthe random 
operator F : i? x X -* X if F((D, ^(w)) = ?((w) a.s. In recenl years, many random fixed 
point theorems have been proved (see, e.g. [2-4] and the references therein). Some authors 
[3, 6, 8] have shown that under some assumpUons. the random operator F : Q ^ X -* X 
has a random fixed point if and only if for almost all w, the delerminisUc mapping f̂  : 
X \-* F{a),x} has a fixed point. Therefore, the existence of a random fixed point follows 
immediately from the existence of the corresponding deterministic fixed point. 

A random operator F : i2 ^ X ->• Y may be considered as an action which transforms 
each delerminislic mpui J: in X into a random output F{ai. x) with values m Y. Taking into 
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account many circumstances in which the inputs are also subject to influence of a random 
environmenL an action which transforms each random input with values in X into random 
output with values in T is called a completely random operator from X into Y. 

As a continuation of [9]. where some results about random fixed points of weakly con­
tractive and semi-contraciive completely random operators were presented, m this paper we 
obtain some results on random fixed pomts of quasi-contractive and asymptotically contrac­
tive completely random operators 

2 Some Properties of Completely Random Operators 

Let (i2,J^, P) be a complete probabihty space and X b& a separable Banach space. A map­
ping ^ : i2 ->- X h called a X-valued random variable if $ is (J^. B)-measurable, where 
B denotes the Borel cr-algebra of X. The set of all (equivalent classes) -V-valued random 
variables is denoted by Z,^(i?) and it is equipped with the topology of convergence in 
probability Namely, the basis neighborhoods for this topology are the sets of the form 
V{ua,e,a) ^ {u e L^{Q) . P{||H - uo\\ > e | < a) and this topology is metrizable. The 
meuic d on L^{Q) that induces this topology can be given by 

d(..„)=E """"" . 

It is known that L^{Q) becomes a complete metric space under this metric (see [7]) and a 
sequence ( H „ ) C I . ^ ( J ? ) converges to H if and only if ( M J converges to « in probability. 

At first, recall that (see, e.g , [8]); 

Definition 1 Let X, Y be two separable Banach spaces. 

1. A mappmg F • Q -K X ^ Y \s said to be a random operator if for each fixed x in X. the 
mapping CD I-^ F(w. x} is measurable. 

2. A random operator F : r? x X ^ y is said to be conunuous if for each a) in i2 the 
mapping x h^ F{u), x) is continuous. 

The following is the notion of a completely random operator. 

Definition 2 (See [9]) Let X. Y be two separable Banach spaces. 

1. A mapping * : L^(i?) -^ L^i^) is called a completely random operator. 
2. The completely random operator 0 is said to be continuous in probability if the mapping 

<P : L^(i2) -^ LliQ) is conUnuous, i.e.. for each sequence (w„) in L^iQ) such that 
lim„ u„ — ((in probability, we have lim„ * H „ = * « In probability, 

3. The completely random operator 0 is said to be an exiension of a random operator F : 
Q x X ^ F i f f o r e a c h x m A -

<t>x{co) = F{eo.x) a.s.. 

where for each x'mX.x denotes the random variable u in L^{Q) given by u{eo) = x a.s. 
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3 Random Fixed Points of Some Completely Random Operators 

Let F : £2 xX—»-Xbea random operator. Recall that (see e.g. [2-4]) an X-valued random 
variable | is said to be a random fixed point of the random operator F if 

F{-,H-))=^i-) a.s. 

Assume that F is continuous and let <P : L^(,i2) -> L^(i7) be defined by 0u{co) = 
F{u}, w(Q>)). Then by [9, Theorem 2.3] * is a completely random operator extendmg F and 
for each random fixed point ^ of F we have 

<P^ — ^ a.s. 

This leads to the following definition: 

Definition 3 Let 4> : LQ(Q) -*• LQ[Q) be a completely random operator. An X-valued 
random variable § in L^{£2) is called a random fixed point of 0 if 

<P^ — ^ a.s. 

Next, we recall a notion of comparison function used by Beg in [ I ] and Olatinwo and 
Olalem in [5]. This type of comparison funcUon is used in order to extend the fixed point 
theorems safisfying contractive condifions. 

Definition 4 [1, 5] A nondecreasing funchon / : [0, -l-cxj) - • [0, -i-oo) is called a compari­
son function if 

1. /(r) = Oifandonlyif;=0; 
2. lim„^=e / " ( O = 0 for all t > 0, 

where / " ( ( ) ^ / ( / ( - • • / ( Q - - • ) ) and / " ( / ) - 1 for all i e [0, +oo). 

It IS easy to see that the following lemma holds 

Lemma 1 / / / : [0,-l-cxj) -> [0.-I-oo) is a comparison function then f(l) <iforanyt > 0. 

Definition 5 Given a comparison function / . [0, -I-oo) -^ [0. -l-cc) and a positive integer k. 
A continuous in probability completely random operator * : Z-o ( ^ ) -* L^i£2) is said to be 
(/,fc)-quasi-contractive if 

P(||**H - 0'v\\ >t)< f{C(0.u, v.t)) (1) 

for all u, V in L^{Q), t > 0 where 

C{.<P.u,v,t)= max { P ( | * ' ' H - *"y| | > 0 1 -
0<p ,v<*,(p,9)?S(*.*) 

0 " H = </>(*(• • •*(«) --)) and</>"H = u for all H eL^(S2) 
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Now, we are concerned with random fixed points of ( / , t)-quasi-contractive completely 
random operators. 

Theorem 1 Let X be a separable Banach space and 4> : L^(£2) ->- L^(n) be a (f, k)-
quasi-contractive completely random operator, where the comparison function f satisfies 

^ / ' ( l ) < o o . (2) 

Then, 4> has a unique random fixed point in L^{Q), and the iterative sequence (*"wo) 
converges in probability to a random fixed point of ^ for any random variable uo in L^(i2). 

Proof Let uo be a random variable in L^(Q) and u„+| =4>u„,n ^ 0 , 1 , . . .From (1), for 
n>k and all r > 0 we have 

P(|[«.+i - «„II > r) -P{|j**(«„+,_*) - 0Hu„-,) 11 > f) 

- ^'^ o<™f<. {P(ll*'"("'.+i-*) - **'("«^t) | | > 01) 

- o<X<. {•^(P(l l* '"(«"+i-*)-* '"(«"-A) | |>f)) l 
(PI ? iS«. ' ) 

0.™,^,. { / (P{ l l« .+ . ,+ i - . -«« . , , ,+ , - . | |> r ) ) ) 
ipi-«i)T'«.*) 

<... 

with ;• ^ [n/k}. So, we have 

< P(l|»,+,, - ! ,„„_, II + . . . + | | „ „ , _ „ JI ^ ,) 

SP(| |»„+j - » . + , , _ , | > r/A) + . . . + p(||„„_^, _ „ j l ^ , / ; , ) 

< E /'(')• 

From (2). we have lira. E j l ^ ™ / • (1 , = 0 Hence, («.) is a Cauchy sequence in i,J(i2). 
Then, there exists f in L j ( C ) such that („.) converges in probability to f. Since » „ , = 
4>», and * ,s continuous ,n probability, letting » ^ oo we get * f = {. i.e., { is a tandom 
fixed point of 0 . 

Let r, be another random fixed point of* . So, for any t > 0, if P(||{ - n|| > i) > 0 then 
from (1) we have 
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P { l l ^ - ' ! ! l > r ) - P ( | | * * ? - * S | j > 0 

< max {/(I 
0<p.q<k.(_p.q)^(k.k)^ ^ 

^ / ( P ( | | f - 7 ? | | > r ) ) 

< I P ( | | ^ - r , | | > r ) 

which yields a contradiction. So, we have P(||^ — jj|| > f) — 0 for any r > 0, i e., $ — f? a s. 
Thus, * has a unique random fixed point. D 

Taking f(t) ^ A,(, 0 < X < 1, we get 

Corollary 1 Let X be a separable Banach space, k be a positive integer number and 0 
L^{i2) -> LQ(Q) be a continuous in probability completely random operator such that for 
each t > 0, andu, v in L^(Q) 

¥{\0''u-0''v\ >t)<XC{0,U,V,t), 

where 0 < A < I. 
Then, <P has a unique random fixed point in LQ{Q), and the iterative sequence {<P"uo) 

converges in probability to a random fixed point of 0 for any uo in L^(Q). 

Example 1 Let {i2,F, P) be a probabihty space, where Q = [0, I], Jf is the cr-algebra of 
Lebesgue measurable subsets of [0,1], P is the Lebesgue measure on [0, 1] and X — IR. 

Consider the completely random operator <P : L^{i2) -^ LQ(i2) defined by 

qu(2o>) i f 0 < w < i , 

0 i f j < w < l , 

where q e (0, 1) is a real constant Put 

A={co:\\0u{co)-0v(a))\\>t] 

= U€\o,^-'\:\\u(2co)-v(2co)\\>t/q\, 

B^{co:\\u(eo)-via>)\\>t/q]. 

Then we see that B is the dilation of A, S ^ 2A. So P(S) = 2P(A) and 

<-r{\\u(co) - v(co)\\ > t) 

foial\u.veL^(£2)mdt>0. 
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Hence, 

F(\\0u(co)-0v(_a>)\\>t) 

< ^ max{P(|lM((w) - vi(o)\\ > i),F{\\uico) - <t>v{fa)\ > i), 

P ( | | * « ( a > ) - i i ( a . ) | i > f ) | 

and we find that 0 is ( / , fc)-quasi-conttactive with / ( / ) = (/2 and i = L It is easy to see 
that the random variable « — 0 is a random fixed point of * . 

Recall that if a subset A of M is Lebesgue measurable of measure X and 5 > 0, then the 
dilation of A by S defined by 5A = {SA: : J: e A) is also Lebesgue measurable of measure 
?,\{A). 

Definition 6 Let X be a separable Banach space, / - [0, -I-oo) -*• [0, -l-co) be a comparison 
function. A continuous in probability completely random operator * : L^iQ) -¥• L^(i2) is 
said to be /-asymptotically contractive if there exist continuous functions /„ : [0, -|-oo} -> 
[0, +00) such that /„ uniformly converges to / and for all w, v in L^{Q), t > 0 

P( | | *"« - 0''v\\ >i)< /„(P(| |« - v\\ > t)). (3) 

Theorem 2 Let X be a separable Banach space and 0 : L^{Q) -* LQ{S2) be a / • 
asymptotically contractive completely random operator. Then, 0 has a unique random fixed 
point and the iterative sequence (0"ua) converges in probability to a random fixed point of 
0 for any UQ in L^ (Q) 

Proof Let u, v be random variables m Lg (i2). From (3), for « > 1 and ( > 0, we have 

P{|| '?'"H-*"if| | > l ) < / „ { P { l l « - ' ^ l l > 0 ) -

So, 

l imsupP(| |<?"M-*' ' i i | | > f ) ^ h m s u p / ^ P d l w - f l l x ) ) 

- / ( P ( [ | « - i ; | | > f ) ) , 

Assume that kmsup„P(| |^"w — *"u | | > r) — e > 0, From (3), we have 

P ( | | * " + ^ - 0"+'vl >t)< /„(P{|<P*« - * ^ | | > f)). 

It implie; 
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Then, we obtain 

IimsuplimsupP(||*"+*M - <&"+*!j| > t) 

<hmsup / (P ( | | 0 ' :H-5 '* i ; | | > l)). 

Hence, 0 < e < /{€> < e, a contradiction. So, assume that l!msup„P(||0''H - 0"v\\ > 

f ) - 0 . 

Let Mo be a random variable in Lj(i2), Taking u — 0''uo. v — UQ, we deduce 

IimsupP(| |0"+' 'Ko-*' '«o| | > i ) ^ 0 . 

Putting u„ = 0"uo, it follows that («„) is a Cauchy sequence m L^i£2). Then, there ex­

ists ? in Lg (i?) such that (u„) converges in probability to ^ . Since u„+i — 0u„ and 0 is 

conUnuous in probability, letting « - * co, we get 0^ — ^, i.e., f is a random fixed point 

of*. 

Let jj be another random fixed point of'J'-So, for any t > 0, if P(||f - r j | | >f ) > 0, then 

we have 

P{M-rj\\>t)=P{\\0"^-0"ri\\>t) 

<.f.,{H\\^-ri\\>t)) 

for all n Leuing n —*• co, we have 

P { | | ? - f , | | > f ) < / ( P ( | | ^ - f , | | > ( ) ) 

<F{\\^-n\\>i) 

which y ie lds a c o n t r a d i c u o n . So , we have P ( | | ^ - )]\\ > ?) — 0 for any 1 > 0 . i.e., f — rj a.s. 

Thus , 0 has a u n i q u e r a n d o m fixed po in t D 
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