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Abstract {n this paper, some results on random fixed points of quasi-contracuve and asymp-
totically contractive completely random operators are given This 1s a continuation of the
paper of Thang and Anh (Random Oper. Stoch. Equ 21:1-20, 2013).
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1 Introduction and Preliminaries

Let (£2. F. ?) be a probability space, X, ¥ be separable metnic spaces and F 2 x X — ¥
be a random operator in the sensc that for each fixed x in X. the mapping w = F(w. x) 18
measurable. An X -valued random vaniable £ is said to be a random fixed point of the random
operator F: 2 x X = X if F(w.§(w)) = &(w) as. In recent years, many random fixed
point theorems have been proved (see, e.g. (2-4) and the references therein). Some authors
(3, 6, 8) have shown that under some assumptions, the random operator F: 2 x X — X
has a random fixed point if and only if for almost all w, the deterministic mappimg £, :
r - F(w,x) has a fixed point. Therefore, the existence of a random fixed point follows
iately from the exi ¢ of the cor ding determimstic fixed point.

A random operator F : 2 x X — ¥ may be considered as an action which transforms

each determimstic input x in X mto a random output F(w. x) with values in Y. Taking 1nto
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134 D.H. Thang. PT. Anh

account many circumstances in which the inpuis are also subject to influence of a random
environment. an action which transforms each random input with values in X into random
output with values in Y 15 called a completely random operator from X into Y.

As a continuation of (9). where some resuits about random fixed points of weakly con-
tractive and semi- ive letely random were p d. 1n this paper we
obtain some results on random fixed points of quasi-contractive and asymptotically contrac-
tive complietely random operators

2 Some Properties of Completely Random Operators

Let (£2, 7, ™) be a complete probability space and X be a separable Banach space. A map-
ping £ : 2 — X is called a X-valued random variable if & is (F. B)-measurable, where
B denotes the Borel o-algebra of X. The set of all (equivalent classes) X -valued random
variables is denoted by L{ (£2) and it is equipped with the topology of convergence in
probabihity Namely, the basis neighborhoods for this topology are the sets of the form
Viwo.€.a) = {u € L§(2) . Plllu = uoll > €} < o} and this topology 1s metrizable. The
metric d on L (£2) that ioduces this topology can be given by

e = vlt

d(u,v) =B ———

. v) T+ fJu =l

It is known that L (£2) becomes a complete metric space under this metric (see [7]) and a

sequence (u,) C L (£2) converges to 1 1f and only if (i,,) converges 1o « in probability.
Al first, recall that (sec, e.g , [8]):

Definition 1 Let X. ¥ be two separable Banach spaces.

1. Aroapping £+ £ x X — Y is said to be a random operator if for each fixed x in X. the
mapping w - F(w. x) is measurable.

2. A random operator F : £ x X — ¥ 1s said to be continuous if for each w in £ the
mapping X > F(w, x) is continuous.

The following is the notion of a completely random operator.

Definition 2 (See [91) Let X. ¥ be two separable Banach spaces.

1. A mapping @ : L§ () — LY (£2) is called 2 completely random operator.

2. The completely random operator @ is said to be continuous in probability if the mapping
@ 1 L{(2) — LY ($2) is continuous, i.c., for each sequence (iry) in LY (£2) such that
limy, 4, = 1t in probability. we have im, ®u, = ®u in probability,

3. The completely random operator @ is said to be an extension of a random operator F:
£ % X — Yifforeachx in X

Px{w) = Flw.x) as.

where for each x in X. x denotes the random variable u in LY ($2) given by u(w) = x as.
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3 Random Fixed Points of Some Completely Random Operators

Lel F: 82 x X — X be a random operator. Recall that (see e.g. (2-4]) an X-valued random
variable £ is said 10 be a random fixed point of the random operator F 1f

F(.6() =E() as.

Assume that F is continuous and let @ : L§(ﬂ) - LOX(Q) be defined by du(w) =
F(w, u(w)). Then by 9, Theorer 2.3] @ is a completely random operator extendug £ and
for each random fixed point £ of F we have

Pt =£ as.

This leads to the following definition:

Definition 3 Let @ : LY(£2) — L§(£2) be a completely random operator. An X-valued
random variable £ in L{(£2) is called a random fixed point of ® if

Pt =t as.
Next, we recall a notion of comparison function used by Beg in [1] and Olatinwo and

Olaleru in (5). This type of comparison function is used in order to extend the fixed point
theorems satisfying contractive conditions.

D jond (1,5] A d ing function f : [0, +00) = (0, +00) is called a compari-
son function if

1. f(y=0fandonly ift =0:
2 lim, . f*(1)y=0forall r > 0.

where f7(1) = f(f(-- f{t)--) and fO(1) =1 for all 1 € [0. +00).
N

anmes

It1s easy to sec that the following lemma holds

Lemma 1 If f:[0, +00) — |0. +00) is a comparison function then f (1) <t for any t > 0.
Deﬁmllon 5 Given acompamon I‘uncnon /. 10.400) — [0. +5¢) and a positive integer &.

A in probabili pletely random operator @ : L (£2) — L (£2) is said 10 be
f k)-quasi—conu‘acuve lr

B(|@'u - ®'o] > 1) < f(C(®.u.v.D) 0}
for all w, v in L§ (£2). 1> 0 where

= B(|oru - d4v| > 1)}
C(@.uv.1) Dsrw'_:ma:wﬂkﬂh(‘ " | =)

@ = DD Dy ) and @Ou = u for all 1 € L (2)
hALAEEL A A

numes
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Now, we are concerned with random fixed points of ( f, k)-quasi-contractive completely
random operators.

Theorem 1 Let X be a separable Banach space and & : L{(2) - L¥(R2) be a (f.k)-
quasi-contractive completely random operator, where the comparison function f satisfies

o
W <o @
1=

Then, ® has a unique random fived pont in La‘ (£2), and the iterative sequence (" up)
converges in probability to a random fixed point of ® for any random variable uy in L;‘ (£2).

Proof Let ug be a random variable in LY (2) and iy = @1, n =0, 1, ... From (1), for
n >k andall 1 > 0 we bave

Punsr = tal) > 1) = P(|9*(tps1-0) = DF ()| > 1)

</(, max (P16 (npa1-) = 07 ()| > 1))
xp,'?,ﬁ&.i;

= e (£ B D7 (wps1) — B4 Gy > 1)}]
(o) )ity

PN (S Ptntp 416 = gyt a1l > )}
(By) Wb

1A

1A

I [ (B (Mtrapy s Apti=ik = Uy bt b 1kl] > 1))]
(7, it 6

=S
with 7 = [n/k]. So, we have
Plltnan — all > 1)
S P(lttnin = tagner | + - + lttnay = gl > 1)

SE(Mnsn = tasratll > 1/ h) + - P(litar = 10yl > 1/ 1)

Indh/k]

< S

iwln/k|

From (2). we have lim, Z!"_‘,:/f,' S'(1) =0 Hence. (u.) is a Cauchy sequence in L} (£2).
Then. there exists & in LY (£2) such that (1) converges in probability 10 £. Since uyy) =
P, and @ js cominvous in probability. letting n — ¢ we get @& =&, ie. & is arandom
fixed point of ®.

Let 7 be another random fixed point of ®. So, for any 1 > 0,if 2(l§ = »l| > 1) > 0. then
from (1) we have
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P(l§ = nll > 1) =P(|@*¢ — @*n| > 1)

D PE P9
‘osr.«s%’fnmn[‘r(‘ (I976 —@al > 1))

= f(P(lIE - nll > 1))
<P(I§ =0l >1)

which yields a contradicuon. So, we have P(||E — n|| > 1) =0 forany 1 > O, 1e., £ =nas.
Thus, @ has a unique random fixed point.

Taking f(1) =At,0 <A < ], we get
Corollary 1 Let X be a separable Banach space. k be a positive mteger number and @

LY(2) > L§(2) bea mp iry pletely random operator such that for
eacht > 0, und wovin L§(2)

P(|0u — o v| > 1) <AC(® u. v, 1),

where 0 <A < 1.
Then, ® has a unique random fixed point in La"(.Q). and the tteranve sequence (®"ug)
converges in probability 1o a random fixed pownt of ® for any ug m L§ ().

Example 1 Let (2, F,P) be a probability space, where 2 = (0, 1], F is the o -algebra of
Lebesgue measurable subsets of [0, 1], F is the Lebesgue measure on [0, 1] and X = K.
Consider the completely random operator @ : L (2) — L{ (£2) defined by

1
Sulw) = lqu(u)) 1f0<w51.

if 1 3 <@l
where g & (0, 1) 15 a real constant Put
={w:|ouw) - du()] > 1}

lwe[ ] Juw) = v2w) | > 1/q}.

and
B=|w: |u@) - v@)| > 1/q}.
Then we see that B is the dilation of A, B =2A. So F(B) = 2P(A) and

P(|@u(w) - S| > 1) P(Ju(@) - v)|| > 1/q)

=7
1
;‘. Uu(w) - u(w)\] >1)

forall w.v e Ly ($2) and 7 > 0.
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138
Hence,
(| Pu() - dv@)] > 1)
< 3 max{P(jut@) = v@] > 1). P(jucw) = @@ > 1),
2(|ou - v > 1))

and we find that @ is ( f. k)-quasi-contractive with f (1) = /2 and k = 1. It is easy to see
that the random variable u = 0 is a random fixed point of @.

Recall that if a subset A of R is Lebesgue measurable of measure X and § > 0, then the
dutation of A by & defined by §A = {8x : x € A} is also Lebesgue measurable of measure
SA(A).

Definition 6 Let X bea separable Banach space f 10, +00) > [0, +oo) be acompanson
function. A inp ity pletely random operator @ : L ($2) — L (R)is
said 1o be f-asymptotically contractive if there exist continuous funcnons a2 10, +co)-;
[0, 4+00) such that f, uniformly converges to f and for all u, v in L;‘(rz),: >0

P(ﬂé"u—@"u“ >l)5f,,(JP(Hu—u” >1)). 3

Theorem 2 Let X be a separable Banach space and & : La‘(.Q) - LY(R) bea |-
asymp ily contractive ipletely random operator. Then, @ has a wnique random fixed
pomt and the iterative sequence (&"up) converges in probability to a random fixed point of
@ for any ug in L (£2)

Proof Let u, v be random variables 1n Lé( ($2). From (3), for n > 1 and t > 0, we have
P(|@"u - @"v| > 1) < fo(P(lu — vl > 1)).
So,
]1msup‘?(”¢"u —d"||>1) < Ilmsupf,,( (llee = vll > 1))
= f(P(lu = vl > 1)).
Assume that im sup, P(J|®"u — @"v|| > 1) =€ > 0. From (3), we have
P(omu— o™y > 1) < fu(B(]|@Fu — #*v|| > 1))
Itiroplies
limslfp?(ﬂw"“u — o™y > 1)
=< ]imsl:pj},(?(ﬁd"u - @] 1))
= /(94 - 4] > 1),
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Theo, we obtain
ljmsu:plims::p?([lc)”""u — "y > 1)
< hmsl:pf{?(”¢"u — o4 > ).

Hence, 0 < ¢ < f(€) < €. a contradiction. So, assume that limsup, (107w — &"v|l >
=0,
Let ug be a random vanable in LS’(.Q). Taking u = @y v = g, we deduce

imsup P&+ ug — d"ug|| > 1) =0.

Puning u, = ®"ug, it follows that (u,) 1s a Cauchy sequence n Lg (£2). Then, there ex-
jsts £ in Lg(n) such that (u,) converges in probability 10 &. Since 4y = @u, and @ 15
continuous in probablity, letting n — oo, we get @£ =&, 1.e., £ 15 a random fixed point
of @.

Let n be another random fixed point of @. So, for any 1 > 0, it P(||¢ — nlf > 1) > 0, then
we have

P(I& —nll > 1) = B(|#"¢ = &"n] > 1)
= fu(P(IE = nll > 1))
forall n Leting n — oo, we have
P(IE —nll > 1) < FE(HE —nll > 1))
=PI —nll > 1)

which yields a contradiction, So, we have P(||§ — nll > 1) =0 forany ¢ > 0.i.c.. & =nas.
Thus, @ has a unique random fixed point
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