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1. Introduct ion 

Let J? be a (bounded or unbounded) domain in R^ with boundary f. In this 
paper we study the existence and long-time behavior of solutions to the following 
two-dimensional non-autonomous p-Navier-Stokes equations with infinite delays: 
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1^ -,'Au t («'V)u + Vp = f{t)-\-F{Uui) m{r,T) x Q, 

V-{gu) - 0 i n (T , r )x l ? , f̂ j 

u =0 on (T,r)xr, 
r/(T + .9,x) =0(s,x) , sGf xj,0],xGf?, 

wlicic u = u(,r./) = (ui.i'a) is the unknown velocity vector, p = p(x,i) is the 
unknown pressure, f > 0 is the kinematic viscosity coefficient. 

The (/-Navier-Stokes equations ia a variation of the standard Navier-Stokes 
equations Moic pr('ci,s('ly, when g = const we get the usual Navier-Stokes equa
tions. The 2D g-Navicr-Stokcs equations arise in a natural way when we study 
the standard 3D problem in thin domains. We refer the reader to [14] for a deriva
tion of the 2D g-Navicr-Slokcs equations from the 3D Navier-Stokes equations 
and a relationship between them. As mentioned in [10], good properties of the 2D 
g-Navier-Stokes equations can initiate the study of the Navier-Stokes equations 
on the thin three-dimensional domain fig = Q y. (0, g). Therefore, in the last 
few years, the existence and asymptotic behavior of solutions to p-Navier-Stokes 
equations have been studied extensively (sec e.g. [1, 2, >̂, 9, 10, 14]). 

However, there are situations in which the model is better described if some 
terms containing delays appear in the equations These delays may appear, for 
instance, when one wants to control the system (in a certain sense) by applying 
a force which takes into account not only the present .state, but the complete 
history of the solutions. Therefore, in this paper we are interested in the case 
in which terms containing infinite delays appear. It is noticed that equations of 
Navier-Stokes type with delays in bounded domains has been studied in [3,4. 5,6] 
for the case of finite delays and very recently in [11, 12] for the case of infinite 
delays. One new feature in this paper is that we are able to prove the existence 
and global stability of solutions of 2D g-Navier-Stokes equations in an infinite 
delay case and domains that are not necessarily bounded but satisfy the Poincare 
inequality. The obtained results, in particular, extend and improve some recent 
ones for Navier-Stokes equations with infinite delays in bounded domains [U] 
and for g-Navier-Stokes equations without delays [1]. 

It is known that there are numerous technical difficulties in dealing with par
tial diff'erential equations with infinite delays in unbounded domains due to the 
unboundedness of the delay involved, and because the Sobolev embeddings are 
no longer compact. These introduce a major obstacle for proving the existence 
of solutions. To overcome these difficulties, in this paper we try to combine 
the techniques used for Navier-Stokes equations in unbounded domains (see e.g. 
[15, 6]) and the techniques used in [U] in dealing with the infinite delays. 

Let X be a Banach space. Given a function u : (-oo,T) ->• X, for each 
( < T we denote by u, the function defined on (-oo,0] by the relation ut(s) = 
u(f+ 5),s€(-oo,0]. 

One possibility to deal with infinite delays, and which we will use here, is to 
consider, for any 7 > 0, the space 
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C^{Hg) - {^ e C ( ( - o o , 0 ] ; i / g ) : 3 ^ h m ^ e ^ V ( s ) € Hg}, 

which is a Banach space with the norm 

II9II.T := sup e'^''|¥'(s)|. 
se(-oo,o] 

Here the space Hg is defined in Section 2 below and | • | denotes the norm in Hg. 

In order to s tudy problem (1), we make the following assumptions: 

(HI) The domain J? can be an arbitrary (bounded or unbounded) domain in R^ 
without any regularity assumption on its boundary f, provided that the 
Poincare inequality holds on Q: There exists Ai > 0 such that 

/ .^=9dx < ^ A v 0 | ^ s d x W<P G H}, (f?); 

(H2) 9 G i r ' ' ° ° ( J 7 ) s u c h t h a t 

0 < mo<g{x)<Mo for alt x = (xi,X2) € J7, and |Vg|oc < n^O'̂ i ; 

(H3) / G L^{T, T; Vg'), where V^ is the dual of the space Vg defined in Section 2; 

(H4) F{t,ut) : {T,T) X C^{Hg) -> L'^{n,g) such that 

(i) V^ € C-,{Hg), the mapping (T , J ' )3 t M- F{t,^) is measurable, 

(u) F{t, 0) - 0 for aU f G (r, T), 

(iii) there exists a constant L f > 0 such tha t Vt G {T,T) and ^,7/ €C^{Hg): 

\F{t,0-F{t,v)\<LF\\^-v\U-

Here the space L^{Q,g) is defined in Section 2 below. 

We now give an example of the delay term F{t, ut). Let F : (r, T) x C^{Hg) -> 
L^{f2,g) be defined as follows 

F{t,0= f Git,s,^{s))ds Vte(r,T),eeC^(iig), 

where the function G • (T,T) X ( - 00 ,0 ) x R^ -> R^ satisfies the followmg as

sumptions: 

1, G( t , s , 0 ) = 0 f o r a l l ( t , 5 ) G ( T , T ) x ( - c o , 0 ) ; 

2. There exists a function K : ( - 00 ,0 ) ->• (0,00) such tha t 

\\G{t, s,u) - G{t, s, v)U^ < K{S)\\U - v\y 

V u , y G R ^ , V ( t , s ) G {T,T') X ( - o o , 0 ) . 
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and the fmiclion r. !,nli,<licK that K(-)e-<^+'' ' £ L ' ( - o o , 0) for some £ > 0. 

Then Ihe function F HatisIioH (H4}. Indeed, (H4-i) and (H4-ii) are obviously 

Siitisfied, for (H4-iii) we liave 

U-'('.0-f('.i/)P 

I [I" K(s)||{(,)(i)-r,(,)(i)|U.ds)'<ii 

< / ( / " K ' ( s ) c - 2 h + ' > " r f » ) ( y ° e 2 < ' + " ' K ( . ) ( i ) - 7)(»)(x) | | | ,<is)ir 

= ll«(>-<^+"lli-(-«.,e|/" ^^e«-'+'l'||«.)(x) -,(»)(x)||S,&<i» 

< I W - ) = - " « ' l l i . ( - ^ 0 | [ »up e ^ ^ ' / l l e W l x l - i W l x j I j I . r f j r e="& 

= iFll?-lll?-

The rest of the paper is organized as follows. In the next section, we recall 
some auxiliary results on function spaces and inequalities for the nonhnear terms, 
which are related to the g-Navier-Stokes equations. In Section 3. we prove the 
existence of a weak solution to problem (1) by using the Galerkin method. The 
existence, uniqueness and global stability of a stationary solution are studied in 
the last section under some additional conditions. 

z . P r e l i m i n a r y r e s u l t s 

Let L^{Q,g) = (^^(X?))^ and i i^(J7,g) = {H^{i7))^ be endowed, respectively, 
with the inner products 

(u, v)g = u- vgdx, u, V € L^{ii, g), 

n 

and 

{{u,v))g= jYyu^-^Vjgdx, u={uuU2),v = {vi,V2)£Hl{Q,g), 

and norms \u\^ = {u,u)g, \\u\\^ = {{u,u))g. Thanks to assumption (H2), the 

norms | • | and || || are equivalent to the usual ones in {L^{f2))^ and m {H^{n))^. 

Let 

V = {ue{C^{!2))'':V-{gu) = Q}. 
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Denote by Hg the closure of V in L'^{Q, g), and by Vg the closure of V in H^ {Q, g). 
It follows that Vg C Hg = H'g c Vg, where the injections are dense and continu
ous. We will use || • | | . for the norm in V' and ( . •} for duality pairing between 
Vg and Vg' 

We now define the trilinear form b by 

2 r .,,, 
b{u,v,w) = y ^ / Ut-—^ir,gd 

, ^ 1 Jj-^ '•''•' 

whenever the integrals make sense. It is easy to check that \!u,v,w 6 Vg, then 

b{ii.v.ir) = ~b{u,w,v). 

Hence 

b{u,v,v) = 0 and b{u,u.u~ v) - b{v,v,u-v) = b{u - v,v,u-v) yu,v €Vg. 

Set A:Vg^ V^ by {Av,v) - ((( , . , ' ) ) , B : Vg x Vg ^ V^ by {B{u,v),w) = 
b{u,v,w). Denote D(A) = {u G Vg . Au G i i g} , then £»(A) = H^in,g)nVg &nd 
Au — -Pg-if i Vu e D{A), where Pg is the ortho-projector from L^{i7,g) onto 

Using the Holder inequahty, the Ladyzhenskaya inequahty (when n — 2)' 

|u| i4 < c|u|^^2|yy|l/2 y ^ g ^^I^^J^ 

and the interpolation inequafities, as in [15] one can prove the following 

L e m m a 2 .1 . Ifn — 2, then 

I
Ci|u|>^2| |„ | | l /2 | |„ | | |^ | l /2 | |^ | | l /2 \fu,v,w€Vg, 

C2|u | i /2 | | u l |V2 | | ^ |P^ | i /2 j^ | i /2 Vu G Vg,V^ D{A),W€ Hg, 

C3\u\^^^\Au\^^^v\\\w\ Vu G D{A),ve Vg,w G Hg, 

Ci\u\\\v\\\w\^/^\Aw\^/^ Vu € Hg,v GVg,we D{A), 

where Ci,i = 1 , . . . , 4, are appropnate constants. 

L e m m a 2 .2 . [2] Let u G L^{T,T\Vg), then the function Bu defined b 

{Bu{t),v)g = b{u{t),u{t),v) ViiGVg, a.e.te[T,T], 

belongs to L^{T,T;V^). 

L e m m a 2 . 3 . [2] Let u G L^(r ,T;V^) , then the function Cu defined b 

{Cu(t),v), = ( ( ^ . V)u ,»)5 = 6 ( ^ , u , » ) Vt, e V„ 

(2) 
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belonfjs to L'^{r,T;Mg), and Inner also belongs to L^{T,T:V;). Moreover, 

\c«{i)\ < i ^ ^ • l"(OI lor a.e. I e ( T , r ) . 

and 

l | O , ( 0 l | . < - l ^ - | M ( ) l l fora.e.te(T,T} 

1 Vo 
-{V-gV)n=-Au-{-^ •^)n. 

{~Au, v)g = ((u, v))g + ( ( ^ • V)u . v)g = {Au, v)g + (Cu. v)g Vu, V G Vg. 

Denote by V{0) the same space as V but with an open set O instead of i?, and 
analogously define Vg{0) the closure of V{0) in H^{0,g), Hg{0) the closure of 
V{0) in L'^{0,g), a.nd D{A{0)) = H'^{0,g)r\Vg{0). 

3. E x i s t e n c e a n d u n i q u e n e s s of w e a k s o l u t i o n s 

Def in i t i on 3 . 1 . A weak solution on the interval (T , T) of problem (I) is a func
tion u G C ( ( - o o , T]\ Hg)r\L'^{T, T; Vg) with u^ = 4>, and such that for all i; G Vg, 

j^{u{t),v)g+u{{u{t),v))g+b{u{t),u{t),v)-\-,^{Cu{t),v)g={f{t).vH{F{t.u,).v)g, 

(3) 
in the sense of X ' ' (T , r ) . 

It IS noticed tha t if u is a weak solution of ( I ) , then u satisfies the following 
energy equality 

|u(t)|2 + 2i/ f | |u(r) | |2dr + 2^ / 6 ( ^ , u ( r ) , u ( r ) ) d r 
Js J s 9 

= \u{s)\^+2J [ ( / ( r ) , u ( r ) ) + ( F ( r , u , ) , u ( r ) ) g ] d r . 

T h e o r e m 3.2 . Suppose that ((> G C~,{Hg) is given and that 27 > f A170, where 

7o = 1 — ' Aji > 0. Then, there exists a unique weak solution u of problem (1) 

on the interval (T,T). 

Proof (i) Uniqueness. Let u,v be two weak solutions of problem (1) with the 
same initial condition and set ly = u - u. Then, using the energy equality, we 
obtain 
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|w(i)p + 2^1^ i\w{sWds + 2^1' b{^. uis). „is]]ds 

= -2j^ b{w(s}.v(s),w(s))ds + 2j {F{s,u,]-F{s,v.,).w{s)),d.,. 

By Lemmas 2.1 and 2.3, we have 

^2f b(wls).v{s}.w{s))ds\<2cij |»(s)|||ii,(s)||||t.(»)||ds 

<i^J^ \\m{s)fds + ^ l ||„(,,)fM.,)|=ds 

and 

|2^ fb{^.u,{s),uis])ds\<2t.i^^ f ||«.{.,)|||»(,)|rf, 

JT ' ^O '^ l JT 

Because of (H4-iii), we have 

b y (F{s,u,) - F{s, Vs), uis))ds\ < 2 f \F{s,u,) - F{s, Vs)\\w{s)\ds 

<2LFJ ||u;,||.,|u>(5)|ds. 

Since w{s) = 0 Vs < r, we have 

i|t£;,||^=supe^V(^ + e)l 

C sup e''''|u;(s + 5)| for r < s < T. 
ee[r-s,o) 

Therefore, one has 

Ht)\'<^ f ]|t;(5)|| = |u.(s)|2ds+(2L^ + ^ ^ ^ ) / ' sup \w{r)\'ds. 

Hence we deduce that 

sup |u;(r)p< f (2LF+''^^^y +^\\v{s)f] sup \w{r)\^ds, 
7-e(r,(] JT ^ ^oM ^ ' T€\T,S\ 

whence the Gronwall inequality completes the proof of uniqueness, 

(ii) Existence. We split the proof of the existence into several steps. 

Step L A Galerkin scheme. Since Vg is separable and V is dense in Vg, there exists 



64 C. T. Anh, D. T. Quyet 

a sequence of linearly irnlcpriidriil elements \v\,V2,...} C V which is total in Vg. 
Denote r„, - ,spaii{i' |.,.,,i;m} and coihsiilcr llie projector P,„n = ^^=i{u,Vj)vj. 
Define also 

wlieie the eoeflicients <\m.] are rcqnired to salisfy the following .system 

J^[u'••(l).r,), + •'{.'W"[l).v,) + ^{C„•'{l),v,),+b^u"(t),u'^'(t),v,) 

= (!{t],v,) + (F(t,n1'),Vi), V j = l , . . . , m , 

and the initial condition U " ' ( T + a) = P-m.'i>{-'*) for s G {-'x.,0]. 

The above system of ordinary functional differential equations with infinite 
delay in the unknown (cvm,i(0 tim,m(0) fulfills the conditions for existence 
and uniqueness of local solutions (see [7, Theorem 1,1, p . 36]), so the approximate 
solutions Um exist. 

Step 2. A priori estimates. Multiplying (4) by Q;m,j(0 and summing in j , we 
obtain 

| ( u " ( i ) , « " ( ( ) ) , + „(Au''(t),u''[t)) + u(Cu'^(t),n'"(t)), 

+ i lu-^W, «"•{(),«•»(()) = ( / ( ( ) ,u ' " ( t ) ) + ( f f t O . u ^ W ) , . 

(5) 

Becausei>(tj '"(f),u"(t),»""(()) = 0 and (Cu" ' ( ( ) , i i ' " ( ( ) )s ^b( —.u'"(t),u"'(t)), 
9 

from (5) we have 

| ( u " > ( t ) , » ' » ( ( ) ) j + , . (Au" ' ( ( ) , " ' " ( l ) )+ I 'M—.«" • (< ) , " " • (< ) ) 

( / (*) ,»"•(()>+ ( F { t , n r ) . « ' " W ) » 

and therefore, 

^ l u ' - W P + 2>/||»'"(()|P = 2 ( / ( ( ) , «•»(()) + 2(F{I. uTWit)), 

-2vh(^,u'"(t),„"'(t)) (6) 

Using the Cauchy inequality and Lemma 2.3, we get 

^ | u " - ( t ) P + 2„\\u"'(t)\\^ < 2eH|u'"(<)IP + i i ^ + 2 i f I k r i l ? 

moAJ" 
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^["•"(Ol^ + 2K70 - e)\\u-{t)f < 2(M^ + i f llarll?), (7) 

II"""!!)!!' > AilJ^Vj^, we also have 

^|«'"(t)|^+ -A,(7„ - £)l"'"(()l'+ "(70 - tJllu-'Cijf < 2 ( i f f i M + i.f | |„r| |?). 

Hence 

Ix'-WP + "(70 - e) f £- '>.h.-)( ' - ) | |„" . ( , ; 

< e - - . h . - . ) ( . - . ) | „ ^ ( , ) | 2 ^ 2 y f , ^ , . X , „ . , - , „ , - „ [ M M l + i , | | „ . n | | 2 ] , , 

Furthermore, 

| | u n i ^ < m a x | sup e2^^|0(e + i - T)!^; sup fe27fl-i'A,(7o-0(t-r+fl)|^(^j|2 
'•fle(-x 7--(| eeir-t.o]'-

+ 2e2^^ | ' ^V ' '^ ' (^<-) ( '+^- ' ( l lMEi + i^||„-| |2')^,] }. 

On one hand, 

sup e-'^ltPie + i - r) | - supe^'^-<'-^"|0(fl)| = e-^'*-"'||0||^. 
ee(-oo,r-(] 9<0 

On the other hand, as we are assuming that 27 > f A170, 

sup e2- ,e- .A,ho-O((-+0) |^(^j |2 < ^ - . A , ( ^ o - . ) ( t - r ) m ^ j | 2 

ee[T—(,oi 

and 

sup e'-"> /"'"'e-' '*'(-»'-'><'+«-)fJ!4^+ir-|l«ril?')>i» 
t€lr-t,0] JT V 4ei/ ^y 

< y'''%--A.(„-.)(,-,)^JIMllI + i^||„J.||2')i,. 

Combining these inequalites we deduce that 

l l« r l l?<e-* '^"- ' " - ' ' l l* l l? + 2 y " e - " ' ' ^ " - ' < ' - ' ( i i ^ + i f l K I I ? ) i s . 

By the Gronwall lemma we have 

||„m||2<^-[.A.(,.-,)-.l,l(.-r)||^||2_^_Ljf'e-[«A.(,-.)-2L,l(.-„,|^(^)||2^, 
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Then we oblmii the following i-sliniatcs: for any R > 0 such that ||^||-y < R, 

ih.-H' l•xi^K a coiihijuil ('t dcpcTnlirig on Xi,u,LF,f,f, H.T. such tha t 

l|,/;"ll= < r ' , v ( G [ T , r | , 7 » > i . (9) 

In particular, this implies that 

{»,'"} is bounded in L^{T,T\H„). (10) 

Integrating (7) from r to T, wc have 

i„-mi^+2,.h.,-o/'ii""'Wii^''.'<i"('-)P+2/'[!!^ + /.rii<ii?)]<(. 

thus, there exists a constant C2 depending on R, ('\ such t liai 

I K l l W . r . v , ) < f̂ 2 V m > l . (11) 

This implies that {u'"} is bounded in L ^ ( T , T . Vg). 

Now, observe that (4) is equivalent to 

^ - -uAu"" - vCu"" - P^B{U"',U"') + P^f{t) + P,„F{t.uT). (12) 
dt 

Hence, we have 
{(«"")'} is bounded in L 2 ( T , T . I;;) (13) 

So, there exist u G L^{T,T;Hg) r\ L^{T,T-.V,) with u' G L'{T.T.V;,) and a 
subsequence of {n*"}, relabelled the same, such that 

{u'"} converges weakly-star to u in L^{r.T. Hg), 

{u""} converges weakly to u in L'^{T.T: \',,). 

{(u"") } converges weakly to u' in L-{T.T; I 'J). 

If f? is bounded, then the Aubin-Lions lemma in [13, Chapter 1] allows us to 
obtain a compactness result: a subsequence u"* converges to u in L'^{T, T: Hg). If 
f? is unbounded, we will have a similar rchult but not in a straightforward way, 
nor on the whole domain Q. Actually, what holds in this case is the following: 
For any bounded open set O C J? there exists a subsequence (depending on O 
which we relabel) satisfying 

u'"\o ^ a\o in LHT,T;{L\0,g)). {'• 

For the sake of clarity, we postpone the proof to Lemma 3.4 below. Then we ( | 
pass to the limit in the term 6(u '" ,u" ' , - ) thanks to the following lemma wh 
proof is exactly the proof of Lemma 3 2 in [15, Chapter III]. d 
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L e m m a 3 .3 . If u^ converges to u in L'^{T,T; \',,(0)) weakly and in L'^{T,T; 
Hg{0)) strongly, where O is an open bounded .s(7. then for any i«(ior function 
w with components belonging to C^{0). we have 

y b{u„.{t),u„,{t).w(t))dt ^ j h{„{l).„{l).U'{l))dl. 

However, the estimates obtained above nro not enough to pass to tlie limit in 
the term F( t ,uJ" ) , 

Step 3. Convergence ID C^{H,i[0)) and existence of a weak solution. 

We will prove that 

u\" ^ u, in C^{Hg{0)) V t G ( - x , r j . 

It is not difficult lo check that this holds if wc prove the following 

P „ , O - > 0 in C^( i /g (0 ) ) , (15) 

u'^-^u in C{[r,TlHg{0)) (16) 

Step 3.1. Appro.nni(itiov in C-.,{Hg{0)) of the initial datum. 

We now check the convergence claimed in (15), Indeed, if not, there would 
exist e > 0 and a subsequence, that we relabel the same, such that 

e ^ " " | P . „ « ( ) „ ) - < ^ ( e „ ) | > e . (17) 

One can assume that ^.^ -» - 3 c . otherwise if 9m -> d, then Pm<l>(ffu.) -> 0(^), 
since |P„<S(e„)- ,^(e | < | P „ « ( e „ ) - P m « 9 ) l + | .R. .*(«)-*(9)l -> O a s m - > + D c 
But with Sm -* - ^ as m -> +x. if we denote x = lim e''^<^(6), we obtain 

fl-*-oo 
that 

e^'"|P™«(e„) - <HSm)\ = |P™(e^"-'A(e™)) - e-^-^ce™)! 
< lP„ (e^"~*(9„ ) ) - P „ i | + |PmX - i | + | i - e i " » * ( « „ ) | ^ 0, 

This IS a contradiction with (17), so (15) holds. 

Step 3.S. Convergence of u" to u m C(IT,T];H,(,0)). 

Prom the strong convergence of {u""} to u in L'^{r, T; Hg{<D)), we deduce that 

»"•(() -> u(t) in ff,(0) a.e. ( e {T,T). 

Since 

« " • ( * ) - « " " ( 5 ) = / ( u ' " ) ' ( r ) * in V; (0 ) V s , t € ( T , j 

from (13) we have tha t {u^} is equi-contmuous on \r,T] with values m Fg(C). 
By the compactness of the embcding H,(0) C K,'(0), from (10) and the cqui-
continuity in Vg{0), using the Arzela-Ascoli theorem we have 
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«"•-> » in (•{\T,T\;V;,{0)). (18) 

,'\j;aHi from (ID) we obtain that for any .sequence {tm} C [T,T] with tjj, -* t, 

n'"{l.„) -> uil) weakly in H,^{0), (19) 

where wc have used (18) in ordci to identify which is the weak limit. 

Now, we arc ready to jirove (16) by a i iintradicfioii argument. If it would 
not be M), then taking into Jiccoiint that u G C{{T,T\; Hg{0}), there would exist 
f > 0. a value /|i e \T,T] and siibsr([ueiices (relabelled the same) {u"*} and 
{tm} C [T.T] with lim („ =- t,, such that 

\u"'{tm) - n{to)\ > ( V m. (20) 

To prove Ihat this is absurd, we will use an energy method. Observe that the 
following energy inequality holds for all u"*: 

i |»"(«) | ' + . . ( l - - ! ^ ) / ' | | u " ( r ) | | ^ r f r 
^ moA/ Js 

< ^ ' ( / (O.u ' -Mjdr + ila'-MI^ + C s d - s ) Vs ,16(x , r ] , 

where C3 — 2^ and D corresponds to the upper bound 

f |F(r. u'PJl^dr < D{t - s) "i r < s < t < T 

On the other hand, from (10), (H4-ii), (H4-iii), tliere exists {F € L'ir. T: L'(0,g)) 
such that {F(f,u"')} converges weakly to E,F in L^[r,T',L'^{0,g)). Thus, we can 
pass to the limit in equation (12) and deduce that u is a solution of 

j^(y.(t),v), + l,({u{t),v]]„ + „[Cu{t).r), + b{u(t).u(t).v) = {f(t).v)+(iF[t),v),. 

(22) 
Therefore, u satisfies the energy equality 

|u(t)l= + 2 y ^ \\u{r)fdT^2v j\cu{r),u{T))gdT 

^\u{s)\^ + 2J ((/(r),u(r)) + (^f(r),u(r))g)dr ^s.t^\T,T], 

and for the weak limit ^p we have the estimate 

j \iF?dr < hminf / |F(r,u7)pdr <D{t-s) \/T<s<t<T. 

So, we have that u also satisfies inequahty (21) with the same constant C3, Now, 
consider two fimctions Jm,J : [T, T] -»• R defined by 
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Mt) = lK{t)\' - l\f{r),u'"[r))dr ~ C,t, 

J(t) = \\u{t)\^ - j\f(rlu(r))dr-C,t. 

It is clear tha t Jm and J are non-increasing and continuous functions. Moreover, 
by the convergence of u"" to u a.e, in t ime with value in Hg{0), and weakly in 
L 2 ( r , T ; i i g ( 0 ) ) , it holds tha t 

J m ( t ) - * J ( 0 a.e. t G [ r , r ] , (23) 

Now we will prove tha t 

«"•((,„) -> u(to) in H,(0), (24) 

which contradicts (20). First, recall from (19) that 

u ' " ( ( ^ ) ^ u(to) weakly in Hg{0), (25) 

so we have 

|u(io)| < hminf |u'"(fm)|. 

Therefore, if we show tha t 

bmsup |u '^ ( (™) |< |u ( io ) |> (26) 

we will obtain that hm \u^{t^)\ - |u(to)l, whichjointly with (25) imply (24). 

Now, observe tha t the case to ^ T foUows directly from (21) with s = r 
and the definition of U ' " ( T ) = Pm0(O). So, we may assume that to > r. This is 
important, since we will approach this value to from the left by a sequence {t'j.}, 
i,e. lim t'̂  / ^ to- Since u{.) is continuous at io, there is k^ such that 

| J ( t ' f c ) - J ( ( o ) l < | Vfc>fc , . 

On the other band, taking m > m{k^) such tha t tm > *'*,., as J™ is non-increasmg 
and for aU t'^. the convergence (24) holds, one has 

J^(tm) - Jitu) < \JUtl) - At'kJl + lAi'kJ - J(io)l 

and obviously, taking m < m ' ( f c £ ) , it is possible to obtain \Jm{t'k^)-<I{i'k,)\ < 3 ' 

It can also be deduced from Step 2 that 

l"^{f{r),u"'(r))dr -^ ^ "{f{r)Mr))dr, 

so we conclude tha t (26) holds. Thus, (24) and finaUy (16) are also true, as we 

file:///JUtl


70 C. T. Anh, .^. T. Quyet 

wanted ID cheek llenre. we have 

F(-,u'") ^ /••( ,.z) in l.'ir.T:LHO.a}). (27) 

In whal follows we will show I lial the convergence results above enable us to 
conclude 1 liat u is a solution of problem (1). Let i/f be a continuously dilTerentiable 
function on |0,r | . Mulliplying (I) by 0((), we have 

+ „I (Chr(t).v,,i,{t)),dt + j b{u'"{f),u'"{t),v,i,{t)}dt 

J {f(t).v,i,(t))dt + j (F(i ,ur),e,v(/))»*. 

Taking a diagonal subsequence, denote again as u"', that satisfies (14) and (27) 
for a sequence of regular bounded open sets Oj C f2 that contain all supports 
of functions v^ of the basis. Passing to the limit, we have 

J"^ {^,vMt))dt + ^j\Au{t),Vj,il})dl 

+ u j {Cu(t),v,m),dt + J blu{t),u{t),v,vit)}dt 

J {f(t),v,i,(t))dt + j [F(t.u,),v,v(t)),dt 

holds for all v-j in the basis and any continuously differentiable function v' o" 
[0, r ] . Thus, we see that u satisfies (3) in the distribution sense. • 

At the end of this section, we prove the following lemma, which has been used 
in the proof of Theorem 3.2. 

Lemma 3.4. Under the assumptions of Theoi'em 3 2. the sequence u"* given m 
(4) is precompact in the following .SCJI.SC suppose a bounded open set O C O is 
given, then there exists a subsequence depending on O, which we relabel, such 
that 

u'"\o^u\o in L-{T.T.L^{0,9)), 

where u is the limit given in (14), 

To prove Lemma 3.1. we will use the following 

Lemma 3.5. [11, Theorem 2.2] Let O be a bounded open set o/R and X C E 
be Banach spaces with compact injection. Consider 1 < r < g < oo. Suppose 
FcL^{e;E) satisfies 
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(i) Vw CC &, sup \\Thf - fllfiw-E) -> 0 irhrn /i -> 0, where r^f is the tran.^-
/ € F 

lation 

(Th/)(a:) = / ( x + /i), 

(ii) F is bounded m L''{e;E) n A'((4; .V) 

Then F is precompact in L''{&] E). 

Proof of Lemma 8.4. Fbc \ G C'(IR+) with \(,s) - 1 for s G [0,1] and v(5) = 0 
for s > 4. Consider O as in the htatoincut, let i^ > 0 be such that O G B{0,R) 
and denote O' = Q r\ B{0.2R). and u"'-'^{x) = u"'{x)x{\xf/R^). Again the 
compactness holds for A" = Hf^{0',g) <Z E = L'^{0\g) with compact injection, 
and we conserve the original u*" on Q D B(0, R). 

For the salce of claritj', we continue the proof directly with u'" instead of 
u '" '^ . Since condition (ii) in Lemma 3.5 is obviously satisfied by (10) and ( I I ) , 
we concentrate on (i). Actually, we will prove that for the whole domain J? the 
following property holds; 

sup ll-Thu"' - u"^\\L^{o.T-h.L^(a.g)) -* 0 when ft -J- 0. 

Consider ft > 0 arbitrarily small. From (4) we deduce for ((, t + ft) C (T, T) tha t 

/ (u" '( t + ft) - u{t))wjgdx + u I / Vu '"(s) • SJwjgdxds 

ft+h ^ rt+h 

+ u b{-^,n"'(s),w,)ds-\- I b{u^{s),u"'{s),w,)ds 

/
t-H/i f ft+h 

/ f{s)wjgdxds+ I F{s,u^)wjgdxds. 
Multiplying by 7mj(t + ft) - fmj{t) and summing in j we obtain 

/ |u'"(* + ft) - u{t)\'^gdx = -u I j Vu" ' ( s ) (Vn '" ( t + ft) - Vu'^{t))gdxds 
Jn Jt Jn 

ft+h 7̂ , ft+h 

^J ( , ( - ^ , u " ' ( s ) , u ' " ( ( + f t ) - u ' " ( t ) ) d s - / 6(u'"(5),u"'(5),u'^(t+ft)-U™(t))d5 

/
t+k p ft+h f 

/ f{s)iu"'{t-\-h)-u"'{t))gdxds-\- / F{s,u^).{u"'{t-hh)^u"'{t))gds. 
The right-hand side may be bounded by 

/
t+h 

|Vu '" (s ) |ds 

+ 1^ r ' ^^%\\u'^is)\\\u"'it + ft) - u^{t)\ds 
Jt m o A / 

file:////Thf


72 C. T. Anh, D. T. Quyet 

+ l""rW'{.^)\\\ir{8)\\\\u"'{t-\-h)-ir{t)\\ds 

fl + h ft+h 

+- / ii/(.'')ii.ii«"'(' + /o-""a)ii'^-''+ / iF(..,u;:')iiu"'(i+ft)-u'"(()ids. 
Thus, using (H2) and (10), we have proved tha t 

/ |u" '(/ + ft) - u" '(() | ' ,W't < !['/"(/• + h)- U'"(i)| | / Gm{s)d8, 
J Si Jt 

wlieri' the function G„, : R -* R is defined a.s' 

G , „ ( . ' . ) ^ i . | | < / " ( , s ) | | + : / i ^ | | u ' " ( , . ) | | + c / ( ' , | | u - ( 5 ) [ | + | | / ( . ) | l . + A r ' ^ ' | F ( . , u " ' ( s ) ) | , 

with Ki being a constant independent of m such tha t |u"*(s)| < Ki. 

To finish the proof, we will est imate 

\\ThU"' - u"'\\h(r.T-h.LHn.g)) = I J kh""" - ""*! V^^d* 

<J | |u '"(t + ft)-u"'(t)|!y Gm{s)dsdt. 

For the right-hand side, the Fubim theorem yields, using the ftmction 

{0 if s < 0, 

s i f 0 < s < r - f t , 

T-h i f s > r - f t , 

to 

/
T-h ft + h 

lln"'(i + ft)-u"'(()|| / G,„{s)dsdt 
^ j G^{s) l__\\u"'{t + h)-u"'{t)\\dtds<2{hK2)^''^ I Gm{s)ds. 

It of m sue 
and the fa 

0 < s - 7 ^ < f t f o r / | |u '"(t + ft)-u'"(i)||dt, 

and 

J _ | |u'"(t + ft) - u '"(() | | dt < [ji^dt) ' ^ ' ( r |]u'"(( + ft) - u'"(t) |l d t ) ' ' 

where K2 is a constant independent of m such tha t / | |u'"{s)| |^ds < i<'2, and 
we have used the Young inequality and the facts that 
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< 2ftV^( T " " y |V»'"|=gd,rd()'^' < 2h'/^Kl'\ 

To conclude, we observe that /^ Gm(s)ds is bounded. Indeed, one has 

jy„(s)ds=£[(v + ,,^-^+eh\)\\u'"{s)\\ + \\f{s)\\.+X:'''\F{s,u-:'\]ds 

+ ^r^(^ii/(»)ii;ds)'"+x/T^Ar'"(^lF(s,ur)i&)"' 
and assumptions (H3)-(H4) give the bound for the two last terms. • 

4. Existence and stability of stationary solutions 

In this section, we will study the existence and stability of a stationary solution 
to problem (I) under some additional conditions. 

The restrictions we must impose to give sense to a stationary solution are 
that / G Vg and F are now autonomous, i.e. without dependence on time, and 
we must clarify how F acts over a fixed element of Hg. This is done with a slight 
abuse of notation in the following sense: We consider F{w) as F{w'), where 
w' G C-y{Hg) is the element that has the only value w for time t < 0. Of course, 
as an immediate consequence of the assumptions for F, it follows that 

|F(xi) - F(X2)| < LF\XI - X2I Vxi,X2 G Hg. 

So, consider the following equation 

^ + z/Au + i^Cu + B{u, u) - / + F{ut) Vt G (r, T). (28) 
dt 

A stationary solution to problem (28) is an element u* G Vg such that 

i'{{u',v))g-\-u{Cu\v)g-\-b{u',u*,v) = {f,v) + {F{u'),v)g \/v G Vg. (29) 

Theorem 4.1. Under the above assumptions and notations, if 

^ 1 : T 7 2 ) > T " ' 

moA/ '̂ 1 

(a) Problem (28) admits at least one stationary solution u*. Moreover, any 
such stationary solution satisfies the estimate 
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IV.9U > i Hl--^)-f\\\n-\\<l\f\\., (30) 
"M>A[ 

(b) If Ihr followiiiq <on,tilion holds 

["a-g7i)-^]^fiii/ii.. (M) 

ii>hri(' Cl w the ronslinil in Lemma 2.1, then the .ttntionary solution of (28) 
'.s um^ue. 

Proof, (i) En'ilvnrc. The fsiiiriiile (30) can be obtamcd taking into account that 
in particular any stalionaiy solution 11'. if it c.xi.st.s. should verify 

,>{Au\i,-) I i'{Cir.u')g = {f,u') + {F{u'),u')g 

and therefore 

H|tx1l^<||/||.||u-|| + :^||u-||2-K^dY^||u-||2. 

For the existence, since Vg is separable there exists a sequence of linearly 
independent elements v\,V2,... which is total in Vg. For each m > 1, let us denote 
Vm = span{ui, ...,Vm} and we would like to define an approximate solution u"" 
of (28) by 

It"* = / ^ 7 m i U i , 

1 = 1 

• / ( ( « - " , » , ) ) + i / t ( ^ , u " ' . t . , ) + 6 ( u ' » , u ' " , » , ) = ( / , , . , ) + ( F ( u " ' ) . ••,),.( = l , . . . , r a . 

(32) 
To prove the existence of u*", we define operators Rn, . V„, -> \',„ by 

((RmU, V)) = 1/(411, V) + l/(fl l , I'), + b(u, U, V) - if, v) ~ (F(l i ) , V), VU,V € Vm. 

For all ueV„, 

{{RmU,u)) = „{Au,u) + i . ( r » . 11). - {f,u) - {Flu),u), 

^''ll..l|2 "I'^-''I^||..||2 aHHI'-ll/ll.lMI-T^IM 
Al iii„A 

("(i-^l-X^)!!"!!^-!!/!!.!!"!!. 

Thus, if we take 

1/(1-
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we obtain ( ( i t ^ u , u)) > 0 for all u € Vm such that ||u|| = 0. Consequently, by a 
corollary of the Brouwer fixed point theorem (see [15, Chapter 2. Lemma 1 4]), 
for each m > I there exists u ^ G V,„ such that R,„{u,„) - 0, with ||um|| < P-
Replacing v, by u '" in (32) and taking into account that b{u"',u"',u'") = 0, we 
get 

i / | | u" ' ( t ) f = ( / ,u" ' ) + ( F ( u ' " ) , u " ' ) g - i / f t ( ^ , u ' " , u " ' ) 
9 

-̂ 1 moA/ 

k l - ^ ^ ) - ^ l l l " " ' l l < 11/11.. (33) 

We extract from {u""} a sequence {u"" }, which converges weakly in Vg to some 
limit u. If 1? is bounded, then the injection of Vg into Hg is compact. Thus, this 
convergence holds also in the norm of Hg 

u'" —>• u weakly in Vg and strongly in Hg, 

up to a subsequence. Passing to the limit in (32) with the sequence m', we find 
that u IS a wealc solution of (28). In the case that i? is unbounded, the injection 
of Vg into Hg is no longer compact. However, this difficulty can be overcome by 
using arguments as in [15. p. 168-171]. 

(ii) Uniqueness. Suppose tha t u* and v* are two stationary solutions of (28). 
Then 

i'(Au*-Av',v)-i-b{u',u',v)-b{v'.v'.v)-i-u{Cu'-Cv',v)g = {F{u'')-F{v'),v)g 

for all u G Vg. Taking v = u' — v', we have 

iy(/iu'-Av',u'-v')=b{v,v'',v)-i^{Cu''-Cv%u*-v')g+{I^{u')-F{v^),u'-v*)g. 

Hence 

...112 , " I V g l - i l . . . ...112 
iy\\u* ~v*f <c,Xl^^^\\u' -v'fWv* 

and therefore 

K-£!te)-^]«-

"-^ 

- " • I I ' : 

^ 1 1 " - " II T 1/2 11" - il 
1 moA/ 

<eiAr""K-»-fKI|. (34) 

From (30) and (34) we have 
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k i - '^•"',;.,) - ^ l ' i i « - -v\?< ^iAr"'ii/ii.iiu- - v \ \ \ (35) 

and the uniqueness follows from (31) and (35). • 

Theorem 4.2. Assume that the assumptions in Theorem 3 2 with f and F m-
dipnidnit of time and (31) hold. Then there exists a value A G (0,27) such that 
for Ihe solution ii{l) of {I) with T = 0 and <j> € ('-,{Hg), the following estimates 
hold for allt>i) 

\u{t) -u*\^< e-^'(|0(O) - u-|^ + J^U^u%), (36) 

| | u , -u - | | ,<max{c-2^ ' | |<^ -u - ! | ^ , c -^ ' ( | 0 (a ) -u - |2+^^ | | 0 -u - | | ? )} , (37) 

where u' is the unique stationary solution of (28). 

Proof. Denote w{t) = u{t) - u*, one has 

d , 
'w\t),v\g + uwwy\ 

-b{u',u',v) = {F{ut)-F{u'),v)g Vt >0,uG Vg. 

From the energy equality, (H4-iii), Lemmas 2,1 and 2.3, and introducing an 
exponential term e with a positive value A to be fixed later on. we obtain 

jy\w{t)\'')=e^'[\\w(t)\' -2^\\w(t)f +2„(Cu- -Cu(t),w(t)), 

+ 2(Ku',ii-,w(t))-6(u((),u(().»(()))+2(F(ii,)-F(u-),u.(l))jl 

M^g\ 
moA}' 

+ |^ll»(()fll«-|l + 2ifll«>IUMi)|], 

Hence, using the Cauchy inequality with i5 > 0 to be fixed later on and (30), we 
have 

< e" \x\w(t)\^ - 2i/||»(()|p + ? ; d l ^ | | ^ ( , ) | | 

jy\u,(t)\^)< e^'^\\w,\\\ 

Therefore, integrating from 0 to t, we have 

e''M()P < KO)l^ + ^ y" e '̂IKII^ds 
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SLF I r i > - i P.. , ^'-f , 2 e i | | / | | . , 2„\Vg\^U' .... , ,„. 
n ' ' ^ 2 .H- ^_ + , , / 2 ( „ ( , _ ^ , _ ^ ) + ^ ; ; ^ ^ e W s , | | . 

In order to control the term /^ (•^••||ui.,||^ds, we proceed as follows 

[ e^'supe^^^\w{s-\-e)fds 

Jo 9<Q 

I e^'max{supe^^^\w{s + e)\^, sup e'^^^\w{s-^9)\'^}ds 
Jo s<-3 ee(-s,ol 

/ max{e-<2-*-^)' ' | |fli-»-| |^, sup e<-^-'-')'e^^''^'^\w{s+ e)f}ds. 
Jo fle[-s,oi 

So, if A < 2-), using the above equality in (38), we obtain 

e"\w{t)\' < |w(0)|" + ^ | | « - a - | | ; f e^'-'-''-ds + [AAr' " 2 " + ^ 

ds. 

(38) 

that the choice of 5 = 1 makes t 
coefficient of the last integral beo 

' L moXj' -*i j 

Observe that the choice of 5 = 1 makes that 5Aj ^Lp + iyF(Aii5) ^ is minimal 
and the coefficient of the last integral becomes 

2ci | | / |U , 2 i . |Vg |^ 
. 1 / 2 • ^'^^> 

mo A J 

Using (31), we have 

2ci l l / l | . 

^ . " A i ' ' [ „ ( l _ i Z 2 i ^ ) - ^ ] " moAl'^ • 

Thus, we can choose A € (0,27) such tha t (39) is negative. So, we can deduce 
that 

e''\w{t)f < |t.(0)|2 + ^ ( 1 - e ( ^ - 2 ^ ' ' ) | | ^ - u*||^, 

whence (36) follows. 

Finally, (37) can be deduced as follows 

| | u . t | | 2 = s u p e 2 ^ V ( t + ^ ) l ' 

J sup e^^<'|u;(t + ^)|2, sup e2^''|u)(t + 0) |2 j 
^ ee(-oo,-(i fle[-(,o]) •' 

= max' i 
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- n i a x ( c - ^ ^ ' | i 0 - <r||^. sup r :=^V( i + « ) l ' } 

and the .second U-rm can l>r csliuiah'd ii.sing (36) and the fact that r '^- '-*)^ < ] 
when fl < 0. • 
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