Vietnam Journal of Mathematacs 40:1(2012) 57-78 Vietnam Journal
of
MATHEMATICS
© VAST

g-Navier-Stokes Equations with Infinite Delays

Cung The Anb' and Dao Trong Quyet?

" Department of Mathematics. Hanor National University of Education,
136 Xuan Thuy. Cou Giay, Hano:, Vietnam

2Foculty of Information Technology, Le Quy Don Techncal Unwersaty,
100 Hoany Quoc Viet. Cau Giay, Hanor, Vietnam

Received July 13, 2011
Revised October 24, 2011

Abstract. \Ve study the first initial boundary value problem for the two-dimensional
non-autonomous g-Navier-Stokes equations containing infinite delay terms in an ar-
bitrary (bounded or unbounded) domain satisfying the Poincaré inequality. The exis-
tence and uniqueness of a weak solution to the problem is proved by using the Galerkin
method. Moreover, we also analyze the stationary problem and, under suitable addi-
tional conditions, we obtain global exponential decay of the solution of the evolutionary
problem to the stationary solution.
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1. Introduction
Let 2 be a (bounded or unbounded) domamn in R? with boundary I". In this

paper we study the existence and long-time behavior of solutions to the following
two-dimensional non-autonomous g-Navier-Stokes equations with infinite delays:
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% v D)+ Up = S+ Fu) in (nT) % 2,
V(g — 0 in (nT) % 2, 0
w =0 on (r,T)x I,

w(r +5,7) =¢(s,x), s€( 0],z €N,

whete w = u(rt) = (i, 12) is the unknown velocity vector, p = p(z,t) is the
unknown pressure, > 0 ix the kinematic viscosity cocfficient.

The ¢-Navier-Stokes equations is n variation of the standard Navier-Stokes
equations More precisely, when g = const we get the usual Navier-Stokes equa-
tions. The 2D g-Navier-Stokes equations arise in a natural way when we study
the standard 3D problens in thin domains. We refer the reader to (14) for a deriva-
tion of the 2D g-Navier-Stokes equations from the 3D Navier-Stokes equations
and a relationship between them. As mentioned in [10), good properties of the 2D
g-Navier-Stokes equations can initiate the study of the Navier-Stokes equations
on the thin three-dimensional domain £2, = 2 x (0, g). Therefore, in the last
fow years, the existence and asymptotic behavior of solutions to g-Navier-Stokes
equations have been studicd extensively (scv e.g. |1, 2, ~. 9, 10, 14)).

However, there are sitnations in which the model is better described if some
terms containing delays appear in the equations These delays may appear, for
instance, when one wants to control the system (in a certain sense) by applying
a force which takes into account not only the present state. but the complete
history of the solutions. Therefore, in this paper we are interested in the case
in which terms containing infinite delays appear, [t is noticed that equations of
Navier-Stokes type with delays in bounded domains has been studied in {3, 4. 5, 6)
for the case of finite delays and very recently in (11, 12] for the case of infinite
delays. One new feature in this paper 1s thal we are able to prove the existence
and global stability of solutions of 2D g-Navier-Stokes equations in an infinite
delay case and dotnains that are not necessarily bounded but satisfy the Poiocaré
inequality. The obtained results, in particular, extend and improve some recent
ones for Navier-Stokes equations with infinite delays in bounded domains [11]
and for g-Navier-Stokes equations without delays |[1).

It is known that there are numerous technical difficulties in dealing with par-
tial differentjal equations with infinite delays in unbounded domains due to the
unboundedness of the delay involved, and because the Sobolev embeddings are
no longer compact, These introduce a major obstacle for proving the existence
of solutions. To overcome these difficulties, in this paper we try to combine
the techniques used for Navier-Stokes equations in unbounded domains (see e.g.
|15, 6]) and the techniques used in [11) in dealing with the infinite delays.

Let X be a Banach space. Given a function u : (—00,T) — X, for each
t < T we denote by u, the function defined on (—00,0] by the relation u(s) =
u(t+s),s € (—00,0].

One possibility to deal with infinite delays, and which we will use here, is to
consider, for any v > 0, the space
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Cy(Hg) = {p € C((=00,0); Hy) : 3 lim e "(s) € H,),
s=-00
which is a Banach space with the norm

llelly := sup  e™|g(s)].
S€(-0e.0]

Here the space Hy is defined in Section 2 helow and |- | denotes the norm in Hg.
In order to study problem (1), we make the following assumptions:
(H1) The domain 2 can be an arbitrary (bounded or unbounded) domain in R?

without any regularity assumption on its boundary I, provided that the
Poincaré inequality holds on £2: There exists A, > 0 such that

/d)’gdz < A—‘I/m\*ga Ve € HY(9):
n n

(H2) g € W™(12) such that
0 < me<g(z)< Mo for all z = (zy.22) € 2, and |Vgleo < mn)‘:ﬂi

(H3) f e L¥,T; V;), where V; is the dual of the space V; defined in Section 2;
(H4) F(t,u): (1,T) x C,(Hy) = L(£, ) such that
(i) V€ € C,(H,), the mapping (7,T)>t — F(t,£) is measurable,
(ii) F(t,0)=0forall t e (r,T),
(3ii) there exists a constant Lp > Osuch that Ve € (7,T) and §,1 €C,{H,):

|E(t,§) = Flt.)| < LrllE = nlls.
Here the space L%(£2, ) is defined in Section 2 below.
We now give an example of the delay term F(¢,u,). Let F : (7,T) x Cy(Hg) =
L*(02,g) be defined as follows
v
F(t,€) = / G(t,s,£(s))ds Ve (r,T).€ € Cy(Hy),
o0

where the function G * (1,T) x (-00,0) x R? = R? satisfies the following as-
sumptions:

1. G(t,5,0) =0 for all (t,5) € (1. T) x (=00,0);
2. There exists a function & : (—00,0) —+ (0, 00) such that
IG(t, 5,2) — G(t, 5, v)llrs < K(s)l[u = Vllr2
Vu, v € R%,Y(¢t,s) € (1,T") x (—00,0),
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and the function a satislies that x(-)e=(*€)" € L2(—00,0) for some € > 0.

Then (he function F satisfies (114). Indeed, (H4-i) and (H4-ii) are obviously
satisficd, for (Hd-iii) we have

\F(E) = Fm?

[ s - s @leds) sz
< [ ([ o) ([ e - el

=mw*mww¢//ﬂWWMMwwmwm

< fln)e= e 132 (,) qup / [I€¢s)(x) ~ n( S)(I]”wdl]/ #*%ds

muvh“%bﬁ&mw-mﬁg
LHIlg - nl2-

The rest of the paper is organized as follows. In the next section. we recall
some auxiliary results on function spaces and inequalities for the nonlinear terms,
which are related to the g-Navier-Stokes equations. [n Section 3. we prove the
existence of a weak solution to problem (1) by using the Galerkin method. The
existence, uniqueness and global stability of a stationary solution are studied in
the last section under some additional conditions.

2. Preliminary results

Let L2(£2,g9) = (L*(2))? and H(R2,9) = (HJ(2))? be endowed, respectively,
with the inner products

(u,v), = /u vgdz, u,v € L3(2.9),
n

and

2
((u,v))g = /ZV“) - Vuygde, u = (uy,u2),v = (n1,12) € H3(2,9),
5=

and norms ful* = (u,u),, ull® = ((4,u)),. Thanks to assumption (H2), the
norms || and || || are equivalent to the usual ones in (L2(£2))? and in (Hg( -(2))7
Let

= {ue (C(M)*: V- (gu) =0}.
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Denote by H,, the closure of V in L2(£2, g). and by Vy the closure of V in HS (92, 9).
[t follows that V, C H, = Hy C V,. where the injections arc dense and continu-
ous, We will use || - ||. for the norm in Vo and (-} for duality priring between
V, and V;

We now define the trilinear form b by

2 .
bl v, w) = Z / U, - :
2

=

whenever the integrals make sense. [t 1s easy to check that if u, v, w € Vy. then
bl ) = ~b(uw, w, ).

Hence

blu,v.v) =0 and b(u.w.u—v) —blv,v.u—v) =blu—v.v,u—v)VuveV,
Set At Vy = Viby (Auv) = ((n.1))g B: Vo xVy = Vy by (B(u,v),w) =
b(u, v, w). Denote D(A) = {u € 1, . Au € H,}. then D(A) = H*(2,9)NV, and
Au = =P, du Yu € D(A). whete P, is the ortho-projector from L%(2, g) onto
H§

Using the Hélder inequality, the Ladyzhenskaya inequality (when n = 2)-

lules < chul'2|Vul'/? Vu € Hi(92),
and the interpolation inequalities, as in [15] one can prove the following
Lemma 2.1. If n = 2, then

exlul 2 [ull 2] [ 2wl Vu,v,w €V,
colul' /2 [u 2 |vll| Aw|' /|| '/* Vu € Vy,v € D(A)w € H,.

b(u, v, w)| <
( ) calul/?|Aul?|u][|lw| Vu€ D(A),v € Vy,w € Hy,
calulllvlllw]'/?| Aw|* /2 Vu€ Hg v € Vg w € D(A),
(2
where ¢,,i = 1,...,4, are approprale constanis,

Lemma 2.2. (2] Let u € L*(1,T;V,), then the function Bu defined by
(Bu(t), v)g = blu(t),u(t),v) YveV, ae te |7, T},

belongs to L?(7,T; V).

Lemma 2.3. [2) Let u € L3(1,T;V,), then the function Cu defined by

(Cu(t),v)g = ((% <V, v)g = b(%,u,v) Yv eV,
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belongs to LA(r, Tt H,), and henee also belongs to L*(r, T:V,). Moreover,

1Cu(t)] € % u(e)| for ae. t € (7, T).
my
and V4]
Il < =22 @l for e, t € (.7)
o,
Since
_l(v.gV)u =—Au- (E SCn.
q 9
we have

(=Auv), = ((u,v)), + ((% -V)u,v), = (Aun), + (Cu,v)y Yu,v €V,

Denaote by V(O) the same spacc as V but with an open sct O instead of £2, and
analogously define V,(O) the closure of V(O) in H3(O, g), Hy(O) the closure of
V(0) in L3O, g), and D(A(O)) = H*(O.g) N Vy(O).

3. Existence and uniqueness of weak solutions

Definition 3.1. A weak solution on the interval (v, T) of problem (1) is a func-
tion u € C((—o00,T); Hg)ﬁL7(r, T, V) with u, = ¢, and such that for all v € V,,

%(“(L)v”)!ﬁ'”(("([)yU))g+b(u(t),u([)‘U)+u(Cu(l).u)y= (f(8). )+ (F (. ur). v)g,
3

in the sense of D'(1,T).

It 15 noticed that if u is a weak solution of (1), then u satisfies the following
energy equality

'
lu(®)® + Zu/ [l () |[%dr + 2]// b(%\ u(r), u(r))dr
; N
=T 42 [ [0 ulr) + (Flru), .
Theorem 3.2. Suppose that ¢ € Cy(H,) s given and that 2v > vA)yo, where
Y=1- % > 0. Then, there exists a unique weak solution u of problem (1)
b

on the interval (1, T).

Proof. (i) Uniqueness. Let u,v be two weak solutions of problem (1) with the
same initial condition and set w = u — v. Then, using the energy equality, we
obtain
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Juw(e)] +2u/ ||w(s)||2ds+2u/ [)(—g.u'(s).u‘(s]):l.s
:_2/5 o m(s)dsu/(mu)—r(su)u(c))
By Lemmas 2.1 and 2.3. we have
.
|2/ b(w(s). v(s). w(s))ds| < ?r;/ Jw(s)lws)[[lo(s)|lds

4 2
<v / lo(s) s + / I () Pl

and

2150 [ o

moA*

_u/ ||w(.s)||7ds+”wg‘x/ Jw(s)|?ds.

21// b(— w(s). w(s))ds

Because of (H4-iii}. we have

|2/ (F(s.uy) = F(s,u,) wis))ds| < 2/A |F(s.us) = F(s.va)||w(s)|ds

<2t [ s luwfs)ids.
Since w(s) = 0 Vs < 7, we have
lwslly = 50338‘”Iw(s +6)|

< sup w(s+8) forr<s<T.
0)

oc(r—s,
Therefore, one has
Y% ! : 2
Jw()|? / ()12 w(s)|?ds + (QLF+ e )/ r’;\(}y}:]|w(r)| ds.
Hence we deduce that
\%
sup fofr)? < JROZERS 9’” Do I%) sue o),
rery v

whence the Gronwall inequality completes the proof of uniqueness.
(ii) Existence. We split the proof of the existence into several steps.
Step 1. A Galerkan scheme. Since V,, is separable and V is dense in V,, there exists
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a sequence of lir pendent clements {m,vz,...} C V which is total in V.
Denote Vi = spinere . vy, } and considler the projector Pon = 3570, (u, v, )u,.
Define also

"

() = Zr.,,._,(/).y,.

a1

whete the coefficients am,, are reguired Lo satisfy the following system

4y, ))a PO Y A+ s (Cat )00y + B0 (8w (), v,)
= (J().n) + (FUL ) n)y V=1l wm

(4

and the initial condition & (7 + 3) = Pad(s) for s € (—x.0|.

The above system of ordinary functional differential equations with infinite
delay in the unknown (qn,1(t), ..., @m.m(t)) fulfills the conditions for existence
and unigueness of local solutions (see (7, Theorem 1.1, p. 36}). so the approximate
solutions u,, exist.

Step 2. A priori estimates. Multiplying (4) by an,,(t) and summing in j, we
obtain
d
E(um(l)‘ u™ (1)), + (AT (1), u (1)) + v(Cu™ (1), u™ (1)),
+b(u™ (1), u™ (1), u™ () = (f()u™ () + (F{t u) u™ (1)
(5)
Because b(u™ (£), u™(t), u™ (t)) = Oand (Cn"™ (1), u™(t))g = b(%

from (5) we have

Su™ (), u™ (1)),

2 (" u™(0)g + v{Au™ (), u™(0) + Vb(%\ u™ (). u™ (1)
(F)u™ () + (F(tu) ™ (8))g

and therefore,

d
EJU"‘(U!? F2]umOIF = 20/ (1) 0™ () + 2 F (. u) u™ (),
V.

- (=L (), ) ®
Using the Cauchy inequality and Lemma 2.3, we get

SO + 201 < 20l + L g e

Vgl 2
+ 20 ™)
e G

and hence
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d
ST OP + 2030 - )l 1)\|2<2("/( R L NG

v

where o = 1 — J—‘\-lm > 0and ¢ > 05 chosen such that 5o —e > 0. Noting that

[le™ ()12 = Ai[u (£)]2, we also have

d
I OF + v 0 = Ol (B4 vy - (O < 2("_M+ L),
k

Hence
!
[™ (O + w0 ~ c)/ ™oM==y (5)||2dg
.

' 2
< emr Mo al=y ()2 +2/ t’”’*‘“""“""[——”‘(::3”' + Lp||u;"“3]d.s.
®)

Furthermore,

flu|I? < max{ sup ez"alzﬁ(ﬂ +t- 7)|Z sup
o€(~

[ 2107.,.\\m—l)u—u-m‘u(q_)l:
0€(r—1,0}

t+0 2
" 2e2"’/ e-»x,m—n(uaﬁ)(”f;;i:ll. n LFHu_:"H?,)dA} }

T

On one hand,

sup |88 + 1 — 7)] = supe? =) = eV g,
fe(—00,7~1] <0

On the other haud, as we are assuming that 2y > vy,

sup eivo-vh(ﬁn-‘)('“”")|u(r)|2 S[uxma—n)(:—r)w(,.)lﬁ
0€(r-1,0]

and

146 2
sup 5270/ c—w\\hn—-d(un—q)("!(5)". . Lpllu;"ll?,)ds
- 4ev

0€lr-1,0)
< /‘“ A rem - ,)(IU( W2 L p 2 2)ds.
Combining these inequalites we deduce that
g2 < emhln=aln)| g2 +2/ —uAy (- )t n)(”/( 92 + Ll )
By the Gronwall lemma we have

I
2 —|v. —¢)=2Lp|(t— 2 —~[vAI(ro—e)=2LF)(t—8) 2
”“{"”7 <e [vAr(ro=€)=2LF|( 1)||¢||7+ E[ e~ vAi(ro—¢ £ 1f (s)12ds.
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Then we obtian the following estinmtes: for any B > 0 such that [féll, < R,
Usere exints a constant € depending on Ay vy Leye, [, 1.7 such that

"2 < €y VEE [r.T]m 2 L ©)
In particalar. this uplies that

{u} is bounded in L (1, T H,). (10)
Integrating (7) from 7 1o T, we have

[II!

1
T+ 200 = ) [ s < \u(r)|’+2/ = L)

<R+ / [!lf(u)lk’+L C]ds

thus, therc exists a constant C depending on 7,y such that
Uu"’\lu(,-,v)_c, ym > 1. (1)

This implies that {u"} is bounded in L (r, T.V,).
Now, observe that (4) is equivalent to

du™
dt

= —vAU™ — vCu"™ = Pm B(u" u™) + P f{t) + Pu F(tu]). (12)

Hence, we have ,

{(u™)'} is bounded in L*(r.T.\)) (13)
So, there exist u € L>(7,Ti Hy) N LA, T:V,) with o’ € LYr.T.1,) and 8
subsequence of {u™}, relabelled the sane, such that

{u™} converges weakly-star to u in L(7.T. H,).
{u™} converges weakly to u in L2(7.T:1)).

{(u™)'} converges weakly to u' in L3(7.T: B

If 2 is bounded. then the Aubin-Liuns lemma in [13. Chapter 1] allows us to
obtain a compactness result: a subsequence 1™ converges to u in L2(1, T: Hy). If
2 is unbounded, we will have a similar result but not in a straightforward way,
nor on the whole domain £2. Actually. what holds in this case is the following:
For any bounded open set © C £ there exists a subsequence (depending on O
which we relabel) satisfying

™o = ulo in L7, T (LX(O, 9)). (14)
For the sake of clarity, we postpone the proof to Lemma 3.4 below. Then we can

pass to the limit in the term b(u™,u™, ) thanks to the following lemma whose
proof is exactly the proof of Lemma 3 2 in {15, Chapter I1]].
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Lemma 3.3. If w,, converges to u mn L3(7,T:V,(O)) weakly and in LX(r,T:
Hy(0)) strongly, where O s an open bounded set. then for any veclor function
w with components belongng to C'(O). we hove

T
/ B (1) w (8). w(t))dt - /I bl (D) u(!). w())dt

However, the estimates obtained above are not cnough 10 pass to the limit in
the term F(f,u}").
Step 3. Convergence v C(H () and evistence of a weak solution.
We will prove that
w' = ugin Cy(Hg(0)) Ve (=x.T]
1t is not difficult 10 check that tlns holds if we prove the following
Puo—= ¢in Cy(Hy(O)). (15)
u™ = uin C({r.T), Hy(O)) (16)
Step 8.1. Approrimation in C(Hy(O)) of the watiel dotum.

We now check the convergence claimed in (15). Indeed, if not, there would
exist € > 0 and a subsequence. that we relabel the same, such that

P 6(0m) — $(6m) > . an

One can assure that #,, = —oc. otherwise if 0,, = 8, then Pm@(0m) — ¢(8),

53068 | Prn6(0m) ~ $(8] < |Prn(0m) = Pen(8)| +| Pra () — 9(6)] = 05 m — +0c

But with §,, - —x as m = +x. if we denote = = olim €194(8), we obtain
——c0

that

€0 | Prn§(B11) = $(0m)| = | Prn (€77 0(B1n)) = €70 86|
< | Pn(€m $(0,1)) = Praz| + |Pmz — 2| + |z —

This 15 & contradiction with (17), so {15) holds.
Step 8.2. Convergence of u™ to u wn C([r, T} Hy(O)).
From the strong convergence of {u™} to u in L*(1,T; Hg(0)), we deduce that

w(t) = u(t) in Hg(O) ae L (r,T).

Since \
W (L) - u™(s) =/ ™) (F)dr in V/(O) Vs,tenT],
s
from (13) we have that {u™} is equi-continuous on [r, 7] with values in V;(O).

By the compactness of the embeding Hy(O) C V;(O), from (10) and the equi-
continuity in V;(0O), using the Arzela-Ascoli theorem we have
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" S in C(lr T V). (18)

Yy

Agann from (10) we obtain that for any sequence {¢m} C |7, T| with tm ~ ¢,
n" (1) - u(t) wenkly in H,(0), (19)

where we have used (18) in arder (o identify which js the weak limit.

Now, we are ready to prove (16) by a conttahetion argument. If it would
not be so, then taking into seconnt that w € C(|7. T): H,(O)), there would exist
¢ > 0. vadue fy € [7,7) nnd sulsequences (relabetled the same) {u™}) and
{tw} C [r.T] with liu‘n L = Ly such thiat

me oo

[0 () = ulte)] 2 ¢ ¥ mm. (20

To prove that this is absurd, we will use an energy method. Observe that the
following energy incquality holds for all u™:

L) 4 w1 - "',,g/nu 2dr
mo 1)

/ Y um (N + ST + Cole = 5) Vst € (1),
f
where C3 = 1‘%' and D corresponds to the upper bound
/ [Firou™Pdr < D(t—s) Y7<s<t<T
On the other hand, from (10), (H4-ii), (H4-iii). there exists £ € L?(r. T: L%(0, g))
such that {F(f,u"™)} converges weakly to &g in L¥(7.T: L*(O, g)). Thus, we can
pass to the limit in equation (12) and deduce that u is a solution of
d
Z(u(t)\v)a+u((u(l), 1))yt (Cult). e)y+b(u(t) u(t) v) = (f(t), v) +(Er(t), v)g.
(22)
Thercfore. u satisfies the energy equality
() + 2u/ la(r)2dr + 2.,/ (Cu(r), u(r)),d
=t +2 [ (0,00 + € ur )i vt € 1T
and for the weak limit £F we have the estimate

L L
[ teelar < it [P uryPar <D0 -9) vrgs<esT

So, we have that u also satisfies inequality (21) with the same constant Cy. Now,
consider two functions Jy,, J ¢ |7, T} — R defined by
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1 '
Im(t) = Sl (O —/ (f(r)u™(r))dr = Cat,

50 = 310 = [ ) - .

1t is clear that Jm, and J are non-increasing and continuous functions. Moreover,
by the convergence of u™ to u a.e. in tine with value in Hy(O), and weakly in
L3(r,T; H,(0)), it holds that

Jm(t)y > J() ae t €[5, T). (23)
Now we will prove that

u™ (L) = u(to) in Hy(O), (24)
which contradicts (20). First, recall from (19) that

u™(tm) = u(te) weakly in Hg(0), (25)

so we have
< limi m .
futa)] < Jiminf [u™ (L))

Therefore, if we show that
lim sup [u" (tm)| < [u(to), (26)
m—s+oo
we will obtain that UT [u™ (Lm )| = |u(to)], which jointly with (25) imply (24).
m—+oo
Now, observe that the case to = 7 follows directly from (21) with s = 7
and the definition of u™ () = Pm@(0). So, we may assume that {o > 7. This is

important, since we will approach this value o from the left by a sequence {t,.},
ie. klirf t}, / to. Since u{.) is continuous at fo, there is k. such that
oo

() - Jt)l < 5 V2 ke

On the other hand, taking m > m(k,) such that £, > ¢ , 88 Jr, is non-increasing
and for all ¢}, the convergence (24) holds, ove has

Jm(tm) = J(to) € [m(t,) = I )]+ 19(8,) = I ko),

€
and obviously, taking m < m'(k,), it is possible to obtain [Jen (8, ) = It )] < 3
It can also be deduced from Step 2 that

[ v - [ uer e

350 we conclude that (26) holds. Thus, (24) and finally (16) are also true, as we
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wanted 1o cheek Heneeo we have

F(ou™) = FCou) in LA T L (O.g)). (27)

In what follows we will shiow that the convergenee results above enable us to

conclude that u is » sulution of problem (1). Let 3 be a continuously ditferentiable
function on (0. 7). Multiplying (1) by ¢{t), we have

T w 1
[ (/’”’““).Uﬂj_x(l,))y/ll+l//’ (A (1) my el 1))t

¥ T
+ u/ (('u'“(:).,-)v,'.(;)),,aH/ b (1), u™ (t), v, W(L))de

I ¥l
/(I(I).u,w(t))dt+/ ()1

Taking a diagonal subscquence, denote again as u™, that satisfies (14) and (27)
for a sequence of regular bounded open sets @, C 2 that contain all supports
of functions v, of the basis. Passing to the limit. we have

T T
/ (dzst)\v,w(L))’dl+u/ (Au(t). v, v (D)t

'r T
+u/ (Cult) v, ¥(t)),dt —F/ b (). (), vy ()dt

T T
[ v@senacr [,

holds for all v, in the basis and any continuously differentiable function 1* on
[0, 7). Thus, we see that u satisfies (3) in the distribution sense. []

At the end of this section, we prove the following lemma, which has been used
in the proof of Theorem 3.2.

Lemma 3.4. Under the assumptions of Theoremt 32, the sequence u™ given n
(4) is precompact in the follounng sense suppose a bounded open set O C 2 15
qruen, then there ensts a subsequence depending on O. which we relabel, such
that

1o = ulo in L*(r. T.L}O,g)).

where u 1s the hmit given in (14).

To prove Lemma 3./, we will use the following

Lemma 3.5. [11, Theorem 2.2] Let © be a bounded open set of R and X C E
be Banach spaces with compact mgection. Consider 1 < r < q¢ < co. Suppose
F C L7(6; E) satisfies
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"

(i) Yw CC B, sup l7nf = [l Lr(u.y = O when h — 0, where 7, f 1 the trons-
JEF

laton
() (@) = f(x + ).
(i) F is bounded i L9(6; E) N L1 (A: N)
Then F s precompact in L7(O: E).
Proof of Lemma 3.4. Fix \ € C'(Ry) with \(s) = 1 for s € [0.1] and \(s) = 0
for s > 4. Consider O as in the stateisent, let B > 0 be such that O € B(0. R)
and denote O = 2N B(0.2R). and u™R(r) = u" () (]x[?/R?). Agan the

compactness holds for N\ = H}(O',g) C E = L*(O'.g) with compnct injection,
and we conserve the original ¢™ on 20 B(0. R).

For the sake of clarity. we continuce the prool diveetly with «™ instead of
u"™R. Since condition (i) in Lenuma 3.5 is obviously satisfied by (10) and (1)),
we coucentrate on (i). Actually, we will prove that for the whole domain 2 the
following property holds:

sup [lmnu™ = u™ |l L2 0. 7—h.L2(0.01y = O when h = 0.
men
Consider h > 0 arbitrarily small. From (4) we deduce for (t,t+ h) C (7,T) that
t+h
/(u"‘(1+h)—u(l))w)gdz+u/ / Vu™(s) - Vw,gdzds
a ' n
g t+h
+l// b(T,u'"(s).w])ds-f—/ b(u™(s),u™(8), w,)ds
f
(‘+h t+h
= / / f(syw,gdzds + / F(s,ul)w,gdzds.
i I3 ¢
Multiplying by Ym,(t + h) = 4m,(t) and summing in j we obtain
t4+h
/ ™ (t + k) — u(t)|*gdz = —y/ / Tu(s)(Vu™ (L + h) — Vu™(¢))gdzds
n ¢ n

t t+h
_/‘H;(%,u”'(s),u"'(l+h)-u"‘(t))ds—/’ )y u (s), w” (1K) =™ (0)ds

t+h

+/M j(a)-(u"‘(L+h)—u’"(t))gd_1:ds+/ Fls, u™).(u™ (t+h)—n"(t))gds.
t n 1] n

The right-hand side may be bounded by

t+h
VU™ (t + h) - vﬂ(t)r/ |Vu™(s)lds

t+h
o [ el g pun oo 1) - s
172
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14 h
+ / Al () e (N (B = ()| ds
IH h L4-h
+ / 1 GOl (¢ -+ ) = u™™ (1) leds + / |E (s u™)|[u™ (4 h) ~ u™(8)|ds.
Thns. using (H2) snd (10), we have proved that
t+h
[y = um s < e ) - ummu/ Gonls)ds,
n t
where the fmction G, @ B = R is defined as:
V. -
Guls) =] (+) w' " = )+ B @)+ A Y2 E (s, u (s)),

with K| being a constant independent of m such that |u™(s)] < K.
To finish the proof, we will estimate

T=h
Irn™ = W g 3 i = / / [rnu™ - u™Pgdzdt
T n
T-h t+h
5/ ||u"'(l+h)—u’"(t)||/ Gmls)dsdt.
i A

For the right-hand side, the Fubini theorem vields. using the function

0 ifs<0.
I=4(3 if0<s<T-h,
T—-h ifs>T=-h,

to
T-h t+h
/ flu™(e+ k) - u'"(z)n/ Gin(s)dsdt
T ] T
< [ Gm(s)/n”u’"(t +h)y—u™(t)dtds < ‘Z(hl\’g)’“[ Gm(s)ds

where K is a constant independent of m such that f'T [lu™(s)I%ds < K2, and
we have used the Young inequality and the facts that

0<5-s8—h<hfor /_Hu"‘(t+h) —u™ ()] de,
R

and

/:_’Illu"’(LJrh) Ol < (/_jgdt)l/z(/;"u’"(t+h)—u"‘(t)|\ m)'“
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T—h 12
52):‘/2(/ / |Vu'"|’gd.1-d:) Py,
v n
To conclude, we observe that frT Gm(s)ds is bounded. Indeed, onc has
T T
< . -
[ Gmtetas = [ (v T e 1w+ U+ A7 s
7 1
< (u + u\ Ileo +cN 1) VT - T(/ Hu'”(S)HIdA‘)
oAy ,
1/2 _ T 172
T ( [ istonas) "4 e ([t i)

and assumptions (H3)-(H) give the bound for the two last terms. n

4. Existence and stability of stationary solutions

In this section, we will study the existence and stability of a stationary solution
to problem (1) under some additional conditions.

The restrictions we must impose to give sense to a stationary solution are
that f € Vg' and F are now autonomous, i.e. without dependence on time, and
we must clarify how F acts over a fixed element of Hy. This is done with a shght
sbuse of potation in the following sense: We consider F(w) as F(w'), where
w' & C,(Hy) is the element that has the only value w for time ¢ < 0. Of course,
asani di e of the ions for F, it follows that

[F(z1) = Fz2)] £ Lrlzy — 22l Y2),72 € H,.
So, consider the following equation

Y VAU vCu+ Bluw) = [+ Flu) VLE(RT). (28)

A stationary solution to problema (28) is an element u* € V, such that
v((u”, )y + (Cu, v)g + by, ut,v) = (f,0) + (F(u'),v)y Yo eV, (29)
Theorem 4.1. Under the above assumptions and notattons, if

[Vgloo , . LF
y(l=—3) >
moAy At

then

(a) Problem (28) admats al least one statwonary solution u’. Moreover, any
such stationary solution satisfies the estimate
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[”“ _ 1Vl
sy

< - (30)

() If the followniy candibsan llids

(3))

m“/\z i A

Vgl Lpy?
[l/(l - ) ] 7

where oy s the constunl o Lenuna 2.1, then the stahwnary solution of (28)
s umque.
Proof. (i) Eristence, The estimate (30) ciun he obtaimed taking into account that
in particular any sGdoncay sohiton o' i it exists. should verify

WA ) Yy = (oY 4 (Fut)ont),

and thercfore

A%
ol P < 0 |I+—Hu 2+ 4 A”,J,zn .

For the existence, since V,, is separable there exists a sequence of linearly
independent elements vy, v2. ... which is total in V. For each m 2 1, let us denote
Vi = spanfvy, ..., tm} and we would like to define an approximate solution u™
of (28) by

"
=3 A
=)

v,
A" )+ o ) )= (o) (F). )i = Ly
(32)
To prove the existence of u™, we define operators Ry, . 15, = 1, by

((Rinuyv)) = w(Au,v) + v(Cu. )y + blu,uv) = (fov) = (Fu).v)g Yu,v € Vin.
For all u € V,,,

((Rinu,u)) = v{Aucu) + v(Cuou)y = (f,u) = (Fu).u)y

4 Lr ISy,
2 vllull® = 171l - \—nun’ - ‘*-’\‘91\::\\-
[AIES
=[v(l -~ ul|? - u
( oAbt )u 12 = 11l
Thus, if we take
/1.

o Sy &

oAl
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we obtain ((Rm,u)) 2 0 for all u € V,, such that |[u| = 3. Consequently. by a
corollary of the Brouwer fixed point theorem (see [15, Chapter 2, Lemma 1 4}).
for each m > 1 there exists u,, € Vi, such that R, (u,.) = 0. with |Jun,| < 3.
Replacing v, by ©™ in (32) and taking into account that b(u™, u™ u™) = 0, we
get

Vi@l = (fou") + (Fla™)o™), ub(— u'u™)

\%
S WA+ = ”“'"||2+r»‘ Z‘” [ 2.
Hence
AW Lr
vl - Y= — "] < ISl 33
LS [u™(] < I/ (33)

We extract from {u™} a sequence {u™'}, which converges weakly in V, to some
limit . If 2 is bounded, then the injection of V, into H, is compact. Thus, this
convergence holds also in the norm of H,

m'

u™ — u weakly in V, and strongly in H,,

up to a subsequence. Passing to the limit in (32) with the sequence m’, we find
that u 15 a weak solution of (28). In the case that 2 is unbounded, the injection
of V, into H, is no longer compact. However, this difficulty can be overcome by
using arguments as in [15. p. 168-171].

(ii) Uniqueness. Suppose that u* and v* are two stationary solutions of (28).
Then

p{Au" = Av", ) +b(u" ut 1) =b(e" v w)+u(Cu  =Cv" ), = (F(u")=F(v7), v)g
for all v € V,. Taking v = u' —v", we have

v{Au" - Av” vt —v Y= b(v, vt v)—v(Cut —Co' u' =" ) g H{(F(u')=F(v'),u"—v")g
Hence

i = € A7t = v P+ S = vl %uu' -

and therefore

v L - . . .
[ - 0y B0 g - )
mpA; A

From (30) and (34) we have
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[0~ Sy B a1 AT - 1 39)

A
and (he upiguencss follows from (31) and (35). n
Theorem 4.2. Assume that the asswinplions in Theorem 3 2 unth [ and F in-
dvperdent of e and (31) hold. Then there exists a value A € (0,27) such that

Jor the solutaon u(t) of (1) wth v =0 and b € (',(H,), the following estimates
hold for all t >0

Iu(t) = w'l? < e (1p(0) = v 2 +

— w2, (36)

-1}, (a0

o=l < max {e 2=l e (16(0)—u" P+

where u* s the unique stationary solution of (28).

Proof. Denote w(t) = u(t) — u*, one has

‘%(w(l)l v)g + v((w(t),v))y + v(Cu(t),v), — v(Cu’ v)g + blu(t) u(t), v}
=b(ut,ut,v) = (Flu) - Fu®),v), Yt>0veV,

From the energy equality, (H4-iti), Lemmas 2.1 and 2.3, and introducing an
exponential term e with a positive value A to be fixed later on. we obtain

%(E“\w([)\z)= eM [/\[W(L)\Q = lw(? +2v(Cu" = Cu(t), w(t)),
2B ", w(t)) = b(u(e). u(t). we (D)) 2(F () = Flu*)y wit))g

20/C oo ,
e [A\wun’ 2l + ﬁnwmu-

,,2 w1+ 2L el ()]

Hence, using the Cauchy inequality with § > 0 (o be fixed later on and (30), we
bave

Lr
(M) < cA'T”’Ul”z

+

+
MOUN0 - B - k) mon”

Therefore, integrating from 0 to ¢, we have

Y NP /72 211/l 2190k 1oy

Lo
M) < ) + 2E [ luilids
0
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ot g O 2aillf1. 2u|w|m]/ Ml [P ds.

N
A TAT ) - L) k) gl

(38)
In order to control the term fo’ > ||l ds. we proceed as follows
13
/ e sup e |w(s + 0))7ds
o 020
¢
/ M max({ sup e*"®lw(s + 0)]%. sup e w(s + 6)|2}ds
o 0+ 0€[-2.0]

t
/ max{e=M g — w7 |2, sup e@INOAKD (s g 0))2)ds.
o 0e(-5.0]

So, if A < 24. using the above equality in (38), we obtain

2 L t 6L
M)l < O + =Ellé - w2 / e [yt o+ 2
0

3 2alfl. QV]vflb; + L—';} / max e [|w(r)i|*ds.
1/ (V(l :1"_4,;_))_ %.L) moAl i c€[0%s}]
Observe that the choice of § = 1 makes that §A7'Lr + Lp(A18)~! 1s minimal
and the cocfficient of the last integral becomes
2Lf 2ci [l /1 2v|Vgle0
Mt =2+ =/ + . 39
,\\ v » + A:/z[ W0 - J_ﬂ_) Ac} "‘ﬂ*iﬂ (39)

77 T

Using (31), we have
£ * e - "vj”. L 7”|Vfl«; <0
A Al [,,(1 - ﬁ%) — jf] moA,

Thus, we can choose A € (0,27y) such that (39) is negative. So, we can deduce
that

-2+

L - .
M@ < O + 55 (- AT g - w

whence (36) follows.
Finally, (37) can be deduced as follows

llwell2 = sup (s + O)1?
0<0

= max { sup  e2Plw(t + 8)?, sup e ’|w(t + 0)|2}
fe(-00.~t) 0€(—t.0))
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= max {1-'2"|}d» - H: sup 2 |w(t + 0)|2}
nef-tn)

i the second term enn be estimated using, (36) and the fact tlat o(27=20 <)
when 0 < 0. .
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