Electrospinning is a technique that produces polymer fibers with diameters in the submicron range. In this study, some electrospinning parameters affecting the morphology, average diameter, and distribution of the diameter of polyvinylidene fluoride (PVDF) fibers were investigated by using scanning electron microscopy (SEM). These electrospinning parameters include solution concentration, applied voltage, the feed rate of solution, distance from the needle to the collector, and solvent mixture. PVDF fibers have a fine structure, narrow distribution of fiber diameter, and average fiber diameter of 736 nm at a solution concentration of 20 wt%, solvent mixture with 60/40 weight of N,Ndimethylacetamide (DMAc) and acetone (Ac), an applied voltage of 11 kV, the feed rate of 1 ml/h, and the distance from the needle to the collector of 17 cm. The hydrophobic property and tensile strength of the PVDF nanofiber membrane were also reported. PVDF nanofibers have the potential to apply in several areas such as water or gas filtration, catalyst, lithium battery, ect.